990 resultados para Viable solutions
Resumo:
The origin of spurious solutions in the eight-band envelope function model is examined and it is shown that spurious solutions arise from the additional spurious degeneracies caused by the unphysical bowing of the conduction bands calculated within the eight-band k center dot p model. We propose two approaches to eliminate these spurious solutions. Using the first approach, the wave vector cutoff method, we demonstrate the origin and elimination of spurious solutions in a transparent way without modifying the original Hamiltonian. Through the second approach, we introduce some freedom in modifying the Hamiltonian. The comparison between the results from the various modified Hamiltonians suggests that the wave vector cutoff method can give accurate enough description to the final results.
Resumo:
We present a systematic investigation of calculating quantum dots (QDs) energy levels using finite element method in the frame of eight-band k . p method. Numerical results including piezoelectricity, electron and hole levels, as yell as wave functions are achieved. In the calculation of energy levels, we do observe spurious solutions (SSs) no matter Burt-Foreman or symmetrized Hamiltonians are used. Different theories are used to analyse the SSs, we find that the ellipticity theory can give a better explanation for the origin of SSs and symmetrized Hamiltonian is easier to lead to SSs. The energy levels simulated with the two Hamiltonians are compared to each other after eliminating SSs, different Hamiltonians cause a larger difference on electron energy levels than that on hole energy levels and this difference decreases with the increase of QD size.
Resumo:
Various concepts have been proposed or used in the development of rheological models for debris flow. The earliest model developed by Bagnold was based on the concept of the “dispersive” pressure generated by grain collisions. Bagnold’s concept appears to be theoretically sound, but his empirical model has been found to be inconsistent with most theoretical models developed from non-Newtonian fluid mechanics. Although the generality of Bagnold’s model is still at issue, debris-flow modelers in Japan have generally accepted Takahashi’s formulas derived from Bagnold’s model. Some efforts have recently been made by theoreticians in non-Newtonian fluid mechanics to modify or improve Bagnold’s concept or model. A viable rheological model should consist both of a rate-independent part and a rate-dependent part. A generalized viscoplastic fluid (GVF) model that has both parts as well as two major rheological properties (i.e., the normal stress effect and soil yield criterion) is shown to be sufficiently accurate, yet practical, for general use in debris-flow modeling. In fact, Bagnold’s model is found to be only a particular case of the GVF model. Analytical solutions for (steady) uniform debris flows in wide channels are obtained from the GVF model based on Bagnold’s simplified assumption of constant grain concentration.
Resumo:
In this paper we study the existence of periodic solutions of asymptotically linear Hamiltonian systems which may not satisfy the Palais-Smale condition. By using the Conley index theory and the Galerkin approximation methods, we establish the existence of at least two nontrivial periodic solutions for the corresponding systems.
Resumo:
The hydrolysis/precipitation behaviors of Al3+, Al-13 and Al-30 under conditions typical for flocculation in water treatment were investigated by studying the particulates' size development, charge characteristics, chemical species and speciation transformation of coagulant hydrolysis precipitates. The optimal pH conditions for hydrolysis precipitates formation for AlCl3, PAC(A113) and PAC(A130) were 6.5-7.5, 8.5-9.5, and 7.5-9.5, respectively. The precipitates' formation rate increased with the increase in dosage, and the relative rates were AlCl3 >> PAC(A130) > PACA113. The precipitates' size increased when the dosage increased from 50 mu M to 200 mu M, but it decreased when the dosage increased to 800 AM. The Zeta potential of coagulant hydrolysis precipitates decreased with the increase in pH for the three coagulants. The isoelectric points of the freshly formed precipitates for AlCl3, PAC(A113) and PAC(A130) were 7.3, 9.6 and 9.2, respectively. The Zeta potentials of AlCl3 hydrolysis precipitates were lower than those of PAC(A113) and PAC(A130) when pH > 5.0. The Zeta potential of PAC(A130) hydrolysis precipitates was higher than that of PACA113 at the acidic side, but lower at the alkaline side. The dosage had no obvious effect on the Zeta potential of hydrolysis precipitates under fixed pH conditions. The increase in Zeta potential with the increase in dosage under uncontrolled pH conditions was due to the pH depression caused by coagulant addition. Al-Ferron research indicated that the hydrolysis precipitates of AlCl3 were composed of amorphous AI(OH)3 precipitates, but those of PACA113 and PACA130 were composed of aggregates of Al-13 and Al-30, respectively. Al3+ was the most un-stable species in coagulants, and its hydrolysis was remarkably influenced by solution pH. Al-13 and Al-30 species were very stable, and solution pH and aging had little effect on the chemical species of their hydrolysis products. The research method involving coagulant hydrolysis precipitates based on Al-Ferron reaction kinetics was studied in detail. The Al species classification based on complex reaction kinetic of hydrolysis precipitates and Ferron reagent was different from that measured in a conventional coagulant assay using the Al--Ferron method. The chemical composition of Al-a, Al-b and Al-c depended on coagulant and solution pH. The Al-b measured in the current case was different from Keggin Al-13, and the high Alb content in the AlCl3 hydrolysis precipitates could not used as testimony that most of the Al3+ Was converted to highly charged Al-13 species during AlCl3 coagulation.
Resumo:
The perturbed-chain statistical associating fluid theory and density-gradient theory are used to construct an equation of state (EOS) applicable for the phase behaviors of carbon dioxide aqueous solutions. With the molecular parameters and influence parameters respectively regressed from bulk properties and surface tensions of pure fluids as input, both the bulk and interfacial properties of carbon dioxide aqueous solutions are satisfactorily correlated by adjusting the binary interaction parameter (k(ij)). Our results show that the constructed EOS is able to describe the interfacial properties of carbon dioxide aqueous solutions in a wide temperature range, and illustrate the influences of temperature, pressure, and densities in each phase on the interfacial properties.
Resumo:
Physical vapor transport studies of GeSe(x)Te1 - x (x = 0.1, 0.2, 0.3, and 0.4) solid solutions demonstrated, that individual, large single crystals of these materials can be grown in closed ampoules. A compositional analysis of the grown crystals revealed, that the mass transport (crystal growth) process under steady-state conditions is pseudo-congruent and controlled by diffusion processes in the source material. From these experiments, the degree of non-stoichiometry (Ge-vacancy concentrations) of GeSe(x)Te1 - x single crystals could be estimated. The effects of the cubic to rhombohedral phase transformation during cooling on the microstructure and morphology of the grown mixed crystals are observed. This work provides the basis for subsequent defect studies and electrical measurements on these crystals.
Resumo:
IEECAS SKLLQG