844 resultados para Vegetal oil
Resumo:
ABSTRACTThe term "energy nationalism" is frequently used by academic literature and media, but usually without adequate conceptual accuracy. Despite this, a set of papers deepens the discussion on the relationship between nation states and the energy industry, especially the oil sector. These papers allow identifying fundamental elements to understand the energy nationalism, either complementary or divergent between each other. Thus, this study aims at presenting an interpretation of the concept that fills the gaps left by the above mentioned literature based on a global analysis of the oil industry structure and its historical evolution since the mid-19thcentury.
Resumo:
Thecamoebian (testate amoeba) species diversity and assemblages in reclamation wetlands and lakes in northeastern Alberta respond to chemical and physical parameters associated with oil sands extraction. Ecosystems more impacted by OSPM (oil sands process-affected material) contain sparse, low-diversity populations dominated by centropyxid taxa and Arcella vulgaris. More abundant and diverse thecamoebian populations rich in difflugiid species characterize environments with lower OSPM concentrations. These shelled protists respond quickly to environmental change, allowing year-to-year variations in OSPM impact to be recorded. Their fossil record thus provides corporations with interests in the Athabasca Oil Sands with a potential means of measuring the progression of highlyimpacted aquatic environments to more natural wetlands. Development of this metric required investigation of controls on their fossil assemblage (e.g. seasonal variability, fossilization potential) and their biogeographic distribution, not only in the constructed lakes and wetlands on the oil sands leases, but also in natural environments across Alberta.
Resumo:
Three cores from the Kearl Lake Oil Sands area within the Athabasca deposit of northeastern Alberta have been analyzed to understand the thermal history of the McMurray and Clearwater formations of the Lower Cretaceous Mannville Group. The approach involves the integration of vitrinite reflectance (VR), Rock-Eval pyrolysis, fluorescence microscopy, and palynology. Mean VR varies between 0.21 and 0.43% Ro and indicates thermally immature levels equivalent to the rank of lignite to sub-bituminous coal. Although differing lithologies have influenced VR to some extent (i.e., coals and bitumen-rich zones), groundwater influence and oxidation seem not to have measurably altered YR. Rock-Eval analysis points to Type III/IV kerogen, and samples rich in amorphous organic matter (ADM) show little to no fluorescence characteristics, implying a terrestrial source of origin. Palynology reveals the presence of some delicate macerals but lack of fluorescence and abundant ADM suggests some degradation and partial oxidation of the samples.
Resumo:
Certificate for 60 shares of capital stock in High Pressure Oil and Gas Syndicate, Limited to Hamilton K. Woodruff, Nov. 1, 1922.
Resumo:
Certificate for 500 shares in La Paz Oil Corporation to Hamilton K. Woodruff, Jan. 24, 1923.
Resumo:
Tesis (Maestría en Ciencias Forestales) U.A.N.L.
Resumo:
Tesis (Maestría en Ciencias Forestales) UANL, 2011.
Resumo:
Tesis (Maestría en Ciencias Forestales) UANL, 2010.
Resumo:
Tesis (Maestría en Ciencias Forestales) UANL, 2011.
Resumo:
Tesis (Maestría en Ciencias Forestales) UANL, 2013.
Resumo:
Tesis (Maestría en Ciencias Forestales) UANL, 2013.
Resumo:
UANL
Resumo:
UANL
Resumo:
The purpose of this paper is to characterize the optimal time paths of production and water usage by an agricultural and an oil sector that have to share a limited water resource. We show that for any given water stock, if the oil stock is sufficiently large, it will become optimal to have a phase during which the agricultural sector is inactive. This may mean having an initial phase during which the two sectors are active, then a phase during which the water is reserved for the oil sector and the agricultural sector is inactive, followed by a phase during which both sectors are active again. The agricultural sector will always be active in the end as the oil stock is depleted and the demand for water from the oil sector decreases. In the case where agriculture is not constrained by the given natural inflow of water once there is no more oil, we show that oil extraction will always end with a phase during which oil production follows a pure Hotelling path, with the implicit price of oil net of extraction cost growing at the rate of interest. If the natural inflow of water does constitute a constraint for agriculture, then oil production never follows a pure Hotelling path, because its full marginal cost must always reflect not only the imputed rent on the finite oil stock, but also the positive opportunity cost of water.