981 resultados para Transmission expansion planning
Resumo:
In this paper, an interactive planning and scheduling framework are proposed for optimising operations from pits to crushers in ore mining industry. Series of theoretical and practical operations research techniques are investigated to improve the overall efficiency of mining systems due to the facts that mining managers need to tackle optimisation problems within different horizons and with different levels of detail. Under this framework, mine design planning,mine production sequencing and mine transportation scheduling models are integrated and interacted within a whole optimisation system. The proposed integrated framework could be used by mining industry for reducing equipment costs, improving the production efficiency and maximising the net present value.
Resumo:
Dengue virus (DENV) transmission in Australia is driven by weather factors and imported dengue fever (DF) cases. However, uncertainty remains regarding the threshold effects of high-order interactions among weather factors and imported DF cases and the impact of these factors on autochthonous DF. A time-series regression tree model was used to assess the threshold effects of natural temporal variations of weekly weather factors and weekly imported DF cases in relation to incidence of weekly autochthonous DF from 1 January 2000 to 31 December 2009 in Townsville and Cairns, Australia. In Cairns, mean weekly autochthonous DF incidence increased 16.3-fold when the 3-week lagged moving average maximum temperature was <32 °C, the 4-week lagged moving average minimum temperature was ≥24 °C and the sum of imported DF cases in the previous 2 weeks was >0. When the 3-week lagged moving average maximum temperature was ≥32 °C and the other two conditions mentioned above remained the same, mean weekly autochthonous DF incidence only increased 4.6-fold. In Townsville, the mean weekly incidence of autochthonous DF increased 10-fold when 3-week lagged moving average rainfall was ≥27 mm, but it only increased 1.8-fold when rainfall was <27 mm during January to June. Thus, we found different responses of autochthonous DF incidence to weather factors and imported DF cases in Townsville and Cairns. Imported DF cases may also trigger and enhance local outbreaks under favorable climate conditions.
Resumo:
OBJECTIVES To identify the meteorological drivers of dengue vector density and determine high- and low-risk transmission zones for dengue prevention and control in Cairns, Australia. METHODS Weekly adult female Ae. aegypti data were obtained from 79 double sticky ovitraps (SOs) located in Cairns for the period September 2007-May 2012. Maximum temperature, total rainfall and average relative humidity data were obtained from the Australian Bureau of Meteorology for the study period. Time series-distributed lag nonlinear models were used to assess the relationship between meteorological variables and vector density. Spatial autocorrelation was assessed via semivariography, and ordinary kriging was undertaken to predict vector density in Cairns. RESULTS Ae. aegypti density was associated with temperature and rainfall. However, these relationships differed between short (0-6 weeks) and long (0-30 weeks) lag periods. Semivariograms showed that vector distributions were spatially autocorrelated in September 2007-May 2008 and January 2009-May 2009, and vector density maps identified high transmission zones in the most populated parts of Cairns city, as well as Machans Beach. CONCLUSION Spatiotemporal patterns of Ae. aegypti in Cairns are complex, showing spatial autocorrelation and associations with temperature and rainfall. Sticky ovitraps should be placed no more than 1.2 km apart to ensure entomological coverage and efficient use of resources. Vector density maps provide evidence for the targeting of prevention and control activities. Further research is needed to explore the possibility of developing an early warning system of dengue based on meteorological and environmental factors.
Resumo:
Australian cities are particularly vulnerable to climate change. Adapting to climate change is a critical task for contemporary spatial planning, one that is widely recognised by the planning profession and beginning to receive substantive attention in planning policy. However adaptation takes place within the context of established spatial governance regimes and planning cultures, and examples of effective adaptation are often grounded in progressive contexts markedly different than Australia. In Australia, planning is subject to strong neoliberal reform agendas (Gleeson & Low, 2000a, 2000b) and national adaptation policies align with neoliberal views (Granberg & Glover, 2011). Planning in Queensland has been subject to deregulation (Buxton et al., 2012) and the continued influence of neoliberalism (Wright & Cleary, 2012). The influence of neoliberalism on climate change adaptation has received little consideration in research and literature. This paper reviews a case study of adaptation planning through the lens of the recent and contemporary influences of neoliberalism. It examines spatial/land-use planning for climate change adaptation in Queensland, identifying the underlying rationales, priorities and strategies. A justification for such an investigation is advanced based on the challenges to planning facilitating adaptation and identified links to neoliberalism. A preliminary analysis of interviews with planners is then used to identify and discuss the ideological influences practitioners perceive in current approaches to adaptation in Queensland and the implications of such.
Resumo:
Motion planning for planetary rovers must consider control uncertainty in order to maintain the safety of the platform during navigation. Modelling such control uncertainty is difficult due to the complex interaction between the platform and its environment. In this paper, we propose a motion planning approach whereby the outcome of control actions is learned from experience and represented statistically using a Gaussian process regression model. This model is used to construct a control policy for navigation to a goal region in a terrain map built using an on-board RGB-D camera. The terrain includes flat ground, small rocks, and non-traversable rocks. We report the results of 200 simulated and 35 experimental trials that validate the approach and demonstrate the value of considering control uncertainty in maintaining platform safety.
Resumo:
This study reports an action research undertaken at Queensland University of Technology. It evaluates the effectiveness of the integration of GIS within the substantive domains of an existing land use planning course in 2011. Using student performance, learning experience survey, and questionnaire survey data, it also evaluates the impacts of incorporating hybrid instructional methods (e.g., in-class and online instructional videos) in 2012 and 2013. Results show that: students (re)iterated the importance of GIS in the course justifying the integration; the hybrid methods significantly increased student performance; and unlike replacement, the videos are more suitable as a complement to in-class activity.
Resumo:
BACKGROUND: Dengue fever (DF) is one of the most important emerging arboviral human diseases. Globally, DF incidence has increased by 30-fold over the last fifty years, and the geographic range of the virus and its vectors has expanded. The disease is now endemic in more than 120 countries in tropical and subtropical parts of the world. This study examines the spatiotemporal trends of DF transmission in the Asia-Pacific region over a 50-year period, and identified the disease's cluster areas. METHODOLOGY AND FINDINGS: The World Health Organization's DengueNet provided the annual number of DF cases in 16 countries in the Asia-Pacific region for the period 1955 to 2004. This fifty-year dataset was divided into five ten-year periods as the basis for the investigation of DF transmission trends. Space-time cluster analyses were conducted using scan statistics to detect the disease clusters. This study shows an increasing trend in the spatiotemporal distribution of DF in the Asia-Pacific region over the study period. Thailand, Vietnam, Laos, Singapore and Malaysia are identified as the most likely clusters (relative risk = 13.02) of DF transmission in this region in the period studied (1995 to 2004). The study also indicates that, for the most part, DF transmission has expanded southwards in the region. CONCLUSIONS: This information will lead to the improvement of DF prevention and control strategies in the Asia-Pacific region by prioritizing control efforts and directing them where they are most needed.
Resumo:
Mosquito-borne diseases pose some of the greatest challenges in public health, especially in tropical and sub-tropical regions of theworld. Efforts to control these diseases have been underpinned by a theoretical framework developed for malaria by Ross and Macdonald, including models, metrics for measuring transmission, and theory of control that identifies key vulnerabilities in the transmission cycle. That framework, especially Macdonald’s formula for R0 and its entomological derivative, vectorial capacity, are nowused to study dynamics and design interventions for many mosquito-borne diseases. A systematic review of 388 models published between 1970 and 2010 found that the vast majority adopted the Ross–Macdonald assumption of homogeneous transmission in a well-mixed population. Studies comparing models and data question these assumptions and point to the capacity to model heterogeneous, focal transmission as the most important but relatively unexplored component in current theory. Fine-scale heterogeneity causes transmission dynamics to be nonlinear, and poses problems for modeling, epidemiology and measurement. Novel mathematical approaches show how heterogeneity arises from the biology and the landscape on which the processes of mosquito biting and pathogen transmission unfold. Emerging theory focuses attention on the ecological and social context formosquito blood feeding, themovement of both hosts and mosquitoes, and the relevant spatial scales for measuring transmission and for modeling dynamics and control.
Resumo:
Ross River virus (RRV) is the most common vector-borne disease in Australia. It is vitally important to make appropriate projections on the future spread of RRV under various climate change scenarios because such information is essential for policy-makers to identify vulnerable communities and to better manage RRV epidemics. However, there are many methodological challenges in projecting the impact of climate change on the transmission of RRV disease. This study critically examined the methodological issues and proposed possible solutions. A literature search was conducted between January and October 2012, using the electronic databases Medline, Web of Science and PubMed. Nineteen relevant papers were identified. These studies demonstrate that key challenges for projecting future climate change on RRV disease include: (1) a complex ecology (e.g. many mosquito vectors, immunity, heterogeneous in both time and space); (2) unclear interactions between social and environmental factors; and (3) uncertainty in climate change modelling and socioeconomic development scenarios. Future risk assessments of climate change will ultimately need to better understand the ecology of RRV disease and to integrate climate change scenarios with local socioeconomic and environmental factors, in order to develop effective adaptation strategies to prevent or reduce RRV transmission.
Resumo:
There has been an intense debate about climatic impacts on the transmission of malaria. It is vitally important to accurately project future impacts of climate change on malaria to support effective policy–making and intervention activity concerning malaria control and prevention. This paper critically reviewed the published literature and examined both key findings and methodological issues in projecting future impacts of climate change on malaria transmission. A literature search was conducted using the electronic databases MEDLINE, Web of Science and PubMed. The projected impacts of climate change on malaria transmission were spatially heterogeneous and somewhat inconsistent. The variation in results may be explained by the interaction of climatic factors and malaria transmission cycles, variations in projection frameworks and uncertainties of future socioecological (including climate) changes. Current knowledge gaps are identified, future research directions are proposed and public health implications are assessed. Improving the understanding of the dynamic effects of climate on malaria transmission cycles, the advancement of modelling techniques and the incorporation of uncertainties in future socioecological changes are critical factors for projecting the impact of climate change on malaria transmission.
Resumo:
In this paper, a loss reduction planning in electric distribution networks is presented based on the successful experiences in distribution utilities of IRAN and some developed countries. The necessary technical and economical parameters of planning are calculated from related projects in IRAN. Cost, time, and benefits of every sub-program including seven loss reduction approaches are determined. Finally, the loss reduction program, the benefit per cost, and the return of investment in optimistic and pessimistic conditions are introduced.
Resumo:
A long query provides more useful hints for searching relevant documents, but it is likely to introduce noise which affects retrieval performance. In order to smooth such adverse effect, it is important to reduce noisy terms, introduce and boost additional relevant terms. This paper presents a comprehensive framework, called Aspect Hidden Markov Model (AHMM), which integrates query reduction and expansion, for retrieval with long queries. It optimizes the probability distribution of query terms by utilizing intra-query term dependencies as well as the relationships between query terms and words observed in relevance feedback documents. Empirical evaluation on three large-scale TREC collections demonstrates that our approach, which is automatic, achieves salient improvements over various strong baselines, and also reaches a comparable performance to a state of the art method based on user’s interactive query term reduction and expansion.
Resumo:
Real-time image analysis and classification onboard robotic marine vehicles, such as AUVs, is a key step in the realisation of adaptive mission planning for large-scale habitat mapping in previously unexplored environments. This paper describes a novel technique to train, process, and classify images collected onboard an AUV used in relatively shallow waters with poor visibility and non-uniform lighting. The approach utilises Förstner feature detectors and Laws texture energy masks for image characterisation, and a bag of words approach for feature recognition. To improve classification performance we propose a usefulness gain to learn the importance of each histogram component for each class. Experimental results illustrate the performance of the system in characterisation of a variety of marine habitats and its ability to operate onboard an AUV's main processor suitable for real-time mission planning.
Resumo:
This paper describes a novel optimum path planning strategy for long duration AUV operations in environments with time-varying ocean currents. These currents can exceed the maximum achievable speed of the AUV, as well as temporally expose obstacles. In contrast to most other path planning strategies, paths have to be defined in time as well as space. The solution described here exploits ocean currents to achieve mission goals with minimal energy expenditure, or a tradeoff between mission time and required energy. The proposed algorithm uses a parallel swarm search as a means to reduce the susceptibility to large local minima on the complex cost surface. The performance of the optimisation algorithms is evaluated in simulation and experimentally with the Starbug AUV using a validated ocean model of Brisbane’s Moreton Bay.
Resumo:
There has been significant research in the field of database watermarking recently. However, there has not been sufficient attention given to the requirement of providing reversibility (the ability to revert back to original relation from watermarked relation) and blindness (not needing the original relation for detection purpose) at the same time. This model has several disadvantages over reversible and blind watermarking (requiring only the watermarked relation and secret key from which the watermark is detected and the original relation is restored) including the inability to identify the rightful owner in case of successful secondary watermarking, the inability to revert the relation to the original data set (required in high precision industries) and the requirement to store the unmarked relation at a secure secondary storage. To overcome these problems, we propose a watermarking scheme that is reversible as well as blind. We utilize difference expansion on integers to achieve reversibility. The major advantages provided by our scheme are reversibility to a high quality original data set, rightful owner identification, resistance against secondary watermarking attacks, and no need to store the original database at a secure secondary storage. We have implemented our scheme and results show the success rate is limited to 11% even when 48% tuples are modified.