922 resultados para TiO2-Zr- O2


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oceanic sediments deposited at high rate close to continents are dominated by terrigenous material. Aside from dilution by biogenic components, their chemical compositions reflect those of nearby continental masses. This study focuses on oceanic sediments coming from the juvenile Canadian Cordillera and highlights systematic differences between detritus deriving from juvenile crust and detritus from old and mature crust. We report major and trace element concentrations for 68 sediments from the northernmost part of the Cascade forearc, drilled at ODP Sites 888 and 1027. The calculated weighted averages for each site can then be used in the future to quantify the contribution of subducted sediments to Cascades volcanism. The two sites have similar compositions but Site 888, located closer to the continent, has higher sandy turbidite contents and displays higher bulk SiO2/Al2O3 with lower bulk Nb/Zr, attributed to the presence of zircons in the coarse sands. Comparison with published data for other oceanic sedimentary piles demonstrates the existence of systematic differences between modern sediments deriving from juvenile terranes (juvenile sediments) and modern sediments derived from mature continental areas (cratonic sediments). The most striking systematic difference is for Th/Nb, Th/U, Nb/U and Th/Rb ratios: juvenile sediments have much lower ratios than cratonic sediments. The small enrichment of Th over Nb in cratonic sediments may be explained by intracrustal magmatic and metamorphic differentiation processes. In contrast, their elevated Th/U and Nb/U ratios (average values of 6.87 and 7.95, respectively) in comparison to juvenile sediments (Th/U ~ 3.09, Nb/U ~ 5.15) suggest extensive U and Rb losses on old cratons. Uranium and Rb losses are attributed to long-term leaching by rain and river water during exposure of the continental crust at the surface. Over geological times, the weathering effects create a slow but systematic increase of Th/U with exposure time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Petrography, major and trace elements, mineral chemistry, and Sr, Nd, and Pb isotopic ratios are reported for igneous rocks drilled on the northern flank of the North d'Entrecasteaux Ridge (NDR) during Ocean Drilling Program (ODP) Leg 134 Site 828. These rocks comprise a breccia unit beneath a middle Eocene foraminiferal ooze. Both geophysical characteristics and the variety of volcanic rocks found at the bottom of Holes 828A and 828B indicate that a very immature breccia or scree deposit was sampled. Basalts are moderately to highly altered, but primary textures are well preserved. Two groups with different magmatic affinities, unrelated to the stratigraphic height, have been distinguished. One group consists of aphyric to sparsely plagioclase + clinopyroxene-phyric basalts, characterized by high TiO2 (~2 wt%) and low Al2O3 (less than 15 wt%) contents, with flat MORB-normalized incompatible element patterns and LREE-depleted chondrite-normalized REE patterns. This group resembles N-MORB. The other group comprises moderately to highly olivine + plagioclase-phyric basalts with low TiO2 (<1 wt%) and high Al2O3 (usually >15 wt%) contents, and marked HFSE depletion and LFSE enrichment. Some lavas in this group are picritic, with relatively high modal olivine abundances, and MgO contents up to 15 wt%. Both the basalts and picritic basalts of this group reflect an influence by subduction-related processes, and have compositions transitional between MORB and IAT. Lavas with similar geochemical features have been reported from small back-arc basins such as the Mariana Trough, Lau Basin, Sulu Sea, and the North Fiji Basin and are referred to as back-arc basin basalts. However, regional tectonic considerations suggest that the spreading that produced these backarc basin basalts may have occurred in the forearc region of the southwest-facing island arc that existed in this region in the Eocene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean Drilling Program (ODP) Leg 176 built upon the work of ODP Leg 118 wherein the 500-m section that was sampled represented the most complete recovery of an intact portion of lower oceanic crust ever described. During Leg 176, we deepened Hole 735B to >1500 m below seafloor in an environment where gabbroic rocks have been tectonically exposed at the Southwest Indian Ridge. This new expedition extended the remarkable recovery (>85%) that allowed unprecedented investigations into the nature of the lower oceanic crust as a result of Leg 118. Sulfide mineral and bulk rock compositions were determined from samples in the 1000-m section of oceanic gabbros recovered during Leg 176. The sulfide assemblage of pyrrhotite, chalcopyrite, pentlandite, and troilite is present throughout this section, as it is throughout the 500-m gabbroic section above that was sampled during Leg 118. Troilite is commonly present as lamellae, and the only interval where troilite was not observed is from the uppermost 150 m of the section sampled during Leg 118, which is intensely metamorphosed. The common presence of troilite indicates that much of the sulfide assemblage from Hole 735B precipitated from a magmatic system and subsequently underwent low-temperature reequilibration. Evaluation of geochemical trends in bulk rock and sulfides indicates that the combined effects of olivine accumulation in troctolites and high pentlandite to pyrrhotite ratios account for the sporadic bulk rock compositions high in Ni. Bulk rock and sulfide mineral geochemical indicators that are spatially coincident with structural and physical properties anomalies indicate a heretofore unrecognized lithologic unit boundary in this section. Platinum-group element (PGE) compositions were also determined for 36 samples from throughout the section that were recovered during Leg 176. Whereas most samples had low (<0.4 ppb) PGE concentrations, rare samples had elevated PGE values, but no unique common trend between these samples is evident.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxide-free olivine gabbro and gabbro, and oxide olivine gabbro and gabbro make up the bulk of the gabbroic suite recovered from Ocean Drilling Program (ODP) Leg 179 Hole 1105A, which lies 1.2 km away from Hole 735B on the eastern transverse ridge of the Atlantis II Fracture Zone, Southwest Indian Ridge. The rocks recovered during Leg 179 show striking similarities to rocks recovered from the uppermost 500 m of Hole 735B during ODP Leg 118. The rocks of the Atlantis platform were likely unroofed as part of the footwall block of a large detachment fault on the inside corner of the intersection of the Southwest Indian Ridge and the Atlantis II Transform at ~11.5 Ma. We analyzed the lithologic, geochemical, and structural stratigraphy of the section. Downhole lithologic variation allowed division of the core into 141 lithologic intervals and 4 main units subdivided on the basis of predominance of oxide gabbroic vs. oxide-free gabbroic rocks. Detailed analyses of whole-rock chemistry, mineral chemistry, microstructure, and modes of 147 samples are presented and clearly show that the gabbroic rocks are of cumulate origin. These studies also indicate that geochemistry results correlate well with downhole magnetic susceptibility and Formation MicroScanner (FMS) resistivity measurements and images. FMS images show rocks with a well-layered structure and significant numbers of mappable layer contacts or compositional contrasts. Downhole cryptic mineral and whole-rock chemical variations depict both "normal" and inverse fine-scale variations on a scale of 10 m to <2 m with significant compositional variation over a short distance within the 143-m section sampled. A Mg# shift in whole-rock or Fo contents of olivine of as much as 20-30 units over a few meters of section is not atypical of the extreme variation in downhole plots. The products of the earliest stages of basaltic differentiation are not represented by any cumulates, as the maximum Fo content was Fo78. Similarly, the extent of fractionation represented by the gabbroic rocks and scarce granophyres in the section is much greater than that represented in the Atlantis II basalts. The abundance of oxide gabbros is similar to that in Hole 735B, Unit IV, which is tentatively correlated as a similar unit or facies with the oxide gabbroic units of Hole 1105A. Oxide phases are generally present in the most fractionated gabbroic rocks and lacking in more primitive gabbroic rocks, and there is a definite progression of oxide abundance as, for example, the Mg# of clinopyroxene falls below 73-75. Coprecipitation of oxide at such early Mg#s cannot be modeled by perfect fractional crystallization. In situ boundary layer fractionation may offer a more plausible explanation for the complex juxtaposition of oxide- and nonoxide-bearing more primitive gabbroic rocks. The geochemical signal may, in part, be disrupted by the presence of mylonitic shear zones, which strike east-west and dip both to the south and north, but predominantly to the south away from the northern rift valley where they formed. Downhole deformation textures indicate increasing average strain and crystal-plastic deformation in units that contain oxides. Oxide-rich zones may represent zones of rheologic weakness in the cumulate section along which mylonitic and foliated gabbroic shear zones nucleate in the solid state at high temperature, or the oxide may be a symptom of former melt-rich zones and hypersolidus flow, as predicted during study of Hole 735B.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During ODP Leg 119 one basement hole was drilled at Site 738, on the Southern Kerguelen Plateau. The 38.2 m of basement rocks drilled comprises three basaltic aa-lava flows with basal and top breccias, overlain by Turanian marine carbonates. Site 738 basalts probably erupted near a fracture zone, and were emplaced during the plateau-forming stage of Kerguelen Plateau evolution under quiet, subaerial to shallow water conditions. The basalts are T-MORB, chemically resembling Mesozoic continental flood basalts of the southern hemisphere. Two slightly different magma batches are distinguished by Fe, Ti, Al, Zr, and REE concentrations. Prior to eruption, the magmas had undergone significant olivine and some clinopyroxene fractionation. Incompatible and immobile trace element concentrations and ratios point to a veined upper mantle source, where a refractory mineral assemblage retains Nb, Ta, and the HREE. The basaltic melts derived from this regionally veined, enriched upper mantle have high LREE, and especially Ba and Th concentrations and bear the DUPAL isotopic signature gained from deep- seated, recycled, old oceanic(?) crust. A saponite-celadonite secondary mineral assemblage confines the alteration temperature to <170°C. Alteration is accompanied by net gains of H2O, CO2, K2O, and Rb, higher oxidation, minor Na2O, SiO2 gains, and losses of V and CaO. Released Ca, together with Ca from seawater, precipitated as calcite in veins and vesicles, plumbed the circulation system and terminated the rock/open seawater interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Subduction related mafic/ultramafic complexes marking the suture between the Wilson Terrane and the Bowers Terrane in northern Victoria Land (Antarctica) are well-suited for evaluating the magmatic and structural evolu- tion at the Palaeo-Pacific continental margin of Gondwana. One of these intru- sions is the "Tiger Gabbro Complex" (TGC), which is located at the southern end of the island-arc type Bowers Terrane. The TGC is an early Palaeozoic island-arc related layered igneous complex characterized by extraordinarly fresh sequences of ultramafic, mafic and evolved lithologies and extensive development of high-temperature high-strain zones. The goal of the present study is to establish the kinematic, petrogenetic and temporal development of the TGC in order to evaluate the magmatic and structural evolution of the deep crustal roots of this Cambrian-aged island-arc. Fieldwork during GANOVEX X was carried out to provide insight into: (i) the spatial relations between the different igneous lithologies of the TGC, (ii) the nature of the contact between the TGC and Bowers Terrane, and (iii) the high-temperature shear zones exposed in parts of the TGC. Here, we report the results of detailed field and petrological observations combined with new geochronological data. Based on these new data, we tentatively propose a petrogenetic-kinematic model for the TGC, which involves a two-phase evolution during the Ross orogeny. These phases can be summarized as: (i) an early phase (maximum age c. 530 Ma) involving tectono-magmatic processes that were active at the deep crustal level represented by the TGC within the Bowers island arc and within a general NE-SW directed contractional regime and (ii) a late phase (maximum age c. 490 Ma) attributed to the late Ross orogenic intrusion of the TGC into the higher-crustal metasedimentary country rocks of the Bowers Terrane under NE-SW directed horizontal maximum stress and subsequent cooling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bulk chemical fine-grained sediment compositions from southern Victoria Land glacimarine sediments provide significant constraints on the reconstruction of sediment provenance models in the McMurdo Sound during Late Cenozoic time. High-resolution (~ 1 ka) geochemical data were obtained with a non-destructive AVAATECH XRF Core Scanner (XRF-CS) on the 1285 m long ANDRILL McMurdo Ice Shelf Project (MIS) sediment core AND-1B. This data set is complemented by high-precision chemical analyses (XRF and ICP-OES) on discrete samples. Statistical analyses reveal three geochemical facies which are interpreted to represent the following sources for the sediments recovered in the AND-1B core: 1) local McMurdo Volcanic Group (MVG) rocks, 2) Transantarctic Mountain rocks west of Ross Island (W TAM), and 3) Transantarctic Mountain rocks from more southerly areas (S TAM). Data indicate in combination with other sediment facies analyses (McKay et al., 2009, doi:10.1130/B26540.1) and provenance scenarios (Talarico and Sandroni, 2009, doi:10.1016/j.gloplacha.2009.04.007) that diamictites at the drill site are largely dominated by local sources (MVG) and are interpreted to indicate cold polar conditions with dry-based ice. MVG is interpreted to indicate cold polar condition with dry-based ice. A mixture of MVG and W TAM is interpreted to represent polar conditions and the S TAM facies is interpreted to represent open-marine conditions. Down-core variations in geochemical facies in the AND-1B core are interpreted to represent five major paleoclimate phases over the past 14 Ma. Cold polar conditions with major MVG influence occur below 1045 mbsf and above 120 mbsf. A section of warmer climate conditions with extensive peaks of S TAM influence characterizes the rest of the core, which is interrupted by a section from 525 to 855 mbsf of alternating influences of MVG and W TAM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Basalts from DSDP Site 417 (109 Ma) exhibit the effects of several stages of alteration reflecting the evolution of seawater-derived solution compositions and control by the structure and permeability of the crust. Characteristic secondary mineral assemblages occur in often superimposed alteration zones within individual basalt fragments. By combining bulk rock and single phase chemical analyses with detailed mineralogic and petrographic studies, chemical changes have been determined for most of the alteration stages identified in the basalts. 1) Minor amounts of saponite, chlorite, and pyrite formed locally in coarse grained portions of massive units, possibly at high temperatures during initial cooling of the basalts. No chemical changes could be determined for this stage. 2) Possible mixing of cooled hydrothermal fluids with seawater resulted in the formation of celadonite-nontronite and Fe-hydroxide-rich black halos around cracks and pillow rims. Gains of K, Rb, H20, increase of Fe 3 +/FeT and possibly some losses of Ca and Mg occurred during this stage. 3a) Extensive circulation of oxygenated seawater resulted in the formation of various smectites, K-feldspar, and Fe-hydroxides in brown and light grey alteration zones around formerly exposed surfaces. K, Rb, H20, and occasionally P were added to the rocks, Fe3+/FeT increased, and Ca, Mg, Si and occasionally Al and Na were lost. 3 b) Anoxic alteration occurred during reaction of basalt with seawater at low water-rock ratios, or with seawater that had previously reacted with basalt. Saponite-rich dark grey alteration zones formed which exhibit very little chemical change: generally only slight increases in Fe 3 +/FeT and H20 occurred. 4) Zeolites and calcite formed from seawater-derived fluids modified by previous reactions with basalt. Chemical changes involved increases of Ca, Na, H20 , and CO2 in the rocks. 5) A late stage of anoxic conditions resulted in the formation of minor amounts of Mn-calcites and secondary sulfides in previously oxidized rocks. No chemical changes were determined for this stage. Recognition of such alteration sequences is important in understanding the evolution of submarine hydrothermal systems and in interpreting chemical exchange due to seawater-basalt reactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nine holes (556-564) drilled during DSDP Leg 82 in a region west and southwest of the Azores Platform (Fig. 1) exhibit a wide variety of chemical compositions that indicate a complex petrogenetic history involving crystal fractionation, magma mixing, complex melting, and mantle heterogeneity. The major element chemistry of each hole except Hole 557 is typical of mid-ocean ridge basalts (MORBs), whereas the trace element and rare earth element (REE) abundances and ratios are more variable, and show that both depleted Type I and enriched Type II basalts have been erupted in the region. Hole 556 (30-34 Ma), located near a flow line through the Azores Triple Junction, contains typically depleted basalts, whereas Hole 557 (18 Ma), located near the same flow line but closer to the Azores Platform, is a highly enriched FeTi basalt, indicating that the Azores hot-spot anomaly has existed in its present configuration for at least 18 Ma, but less than 30-34 Ma. Hole 558 (34-37 Ma), located near a flow line through the FAMOUS and Leg 37 sites, includes both Type I and II basalts. Although the differences in Zr/Nb and light REE/heavy REE ratios imply different mantle sources, the (La/Ce)ch (>1) and Nd isotopic ratios are almost the same, suggesting that the complex melting and pervasive, small-scale mantle heterogeneity may account for the variations in trace element and REE ratios observed in Hole 558 (and FAMOUS sites). Farther south, Hole 559 (34-37 Ma), contains enriched Type II basalts, whereas Hole 561 (14-17 Ma), located further east near the same flow line, contains Type I and II basalts. In this case, the (La/Ce)ch and Nd isotopic ratios are different, indicating two distinct mantle sources. Again, the existence along the same flow line of two holes exhibiting such different chemistry suggests that mantle heterogeneity may exist on a more pervasive and transient smaller scale. (Hole 560 was not sampled for this study because the single basalt clast recovered was used for shipboard analysis.) All of the remaining three holes (562, 563, 564), located along a flow line about 100 km south of the Hayes Fracture Zone (33°N), contain only depleted Type I basalts. The contrast in chemical compositions suggests that the Hayes Fracture Zone may act as a "domain" boundary between an area of fairly homogeneous, depleted Type I basalts to the south (Holes 562-564) and a region of complex, highly variable basalts to the north near the Azores hot-spot anomaly (Holes 556-561).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Basalts from Maud Rise, Weddell Sea, are vesicular and olivine-phyric. Major, trace, and rare earth element concentrations are similar to those of alkali basalts from ocean islands and seamounts. The rocks are low in MgO, Cr, Ni, and Sc, and high in TiO2, K2O, P2O5, Zr, and LREE contents. The abundance of "primary" biotite and apatite in the matrix indicates the melting of a hydrous mantle. Prevalence of olivine and absence of plagioclase in the rocks suggests that the volatile in the melt was an H2O-CO2 mixture, where H2O was <0.5. Mantle derived xenocrysts in the basalt include corroded orthopyroxene, chromite, apatite, and olivine. Olivine (Fo90) is too magnesian to be in equilibrium with the basalts, as they contain only 5-6 wt% MgO. Based on the presence of mantle xenocrysts, the high concentration of incompatible elements, the spatial and chemical affinity with other ocean island basalts from the area, and the relative age of the basalt (overlain by late Campanian sediments), it is suggested that Maud Rise was probably generated by hot-spot activity, possible during a ridge crest jump prior to 84 Ma (anomaly 34 time). Iddingsite, a complex intergrowth of montmorillonite and goethite, is the major alteration product of second generation olivine. It is suggested that iddingsite crystallized at low temperatures (<200°C) from an oxidized fluid during deuteric alteration. Vesicles are commonly filled by zeolites which have been replaced by K-feldspars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distribution patterns, petrography, whole-rock and mineral chemistry, and shape and fabric data are described for the most representative basement lithologies occurring as clasts (granule to bolder grain-size class) from the 625 m deep CRP-2/2A drillcore. A major change in the distribution pattern of the clast types occurs at c. 310 mbsf., with granitoid-dominated clasts above and mainly dolerite clasts below; moreover, compositional and modal data suggest a further division into seven main detrital assemblages or petrofacies. In spite of this variability, most granitoid pebbles consist of either pink or grey biotite±hornblende monzogranites. Other less common and ubiquitous lithologies include biotite syenogranite, biotite-hornblende granodiorite, tonalite, monzogranitic porphyries (very common below 310 mbsf), microgranite, and subordinately, monzogabbro, Ca-silicate rocks, biotite-clinozoisite schist and biotite orthogneiss (restricted to the pre-Pliocene strata). The ubiquitous occurrence of biotite±hornblende monzogranite pebbles in both the Quaternary-Pliocene and Miocene-Oligocene sections, apparently reflects the dominance of these lithologies in the onshore basement, and particularly in the Cambro-Ordovician Granite Harbour Igneous Complex which forms the most extensive outcrop in southern Victoria Land. The petrographical features of the other CRP-2/2A pebble lithologies are consistent with a supply dominantly from areas of the Transantarctic Mountains facing the CRP-2/2A site, and they thus provide further evidence of a local provenance for the supply of basement clasts to the CRP-2/2A sedimentary strata.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lavas from several major bathymetric highs in the eastern Indian Ocean that are likely to have formed as Early to Middle Cretaceous manifestations of the Kerguelen hotspot are predominantly tholeiitic; so too are glass shards from Eocene to Paleocene volcanic ash layers on Broken Ridge, which are believed to have come from eruptions on the Ninetyeast Ridge. The early dominance of tholeiitic compositions contrasts with the more recent intraplate, alkalic volcanism of the Kerguelen Archipelago. Isotopic and incompatible-element ratios of the plateau lavas are distinct from those of Indian mid-ocean ridge basalts; their Nd, Sr, 207Pb/204Pb and 2078b/204Pb isotopic ratios overlap with but cover a much wider range than measured for more recent oceanic products of the Kerguelen hotspot (including the Ninetyeast Ridge) or, indeed, oceanic lavas from any other hotspot in the world. Samples from the Naturaliste Plateau and ODP Site 738 on the southern tip of the Kerguelen Plateau are particularly noteworthy, with e-Nd(T) = -13 to -7, (87Sr/86Sr)T=0.7090 to 0.7130 and high 207Pb/204Pb relative to 206Pb/204Pb. In addition, the low-e-Nd(T) Naturaliste Plateau samples are elevated in SiO2 (>54 wt%). In contrast to "DUPAL" oceanic islands such as the Kerguelen Archipelago, Pitcairn and Tristan da Cunha, the plateau lavas with extreme isotopic characteristics also have relative depletions in Nb and Ta (e.g., Th/Ta, La Nb > primitive mantle values); the lowest e-Nd(T) and highest Th/Ta and La Nb values occur at sites located closest to rifted continental margins. Accepting a Kerguelen plume origin for the plateau lavas, these characteristics probably reflect the shallow-level incorporation of continental lithosphere in either the head of the early Kerguelen plume or in plume-derived magmas, and suggest that the influence of such material diminished after the period of plateau construction. Contamination of asthenosphere with the type of material affecting Naturaliste Plateau and Site 738 magmatism appears unlikely to be the cause of low-206Pb/204Pb Indian mid-ocean ridge basalts. Finally, because isotopic data for the plateaus do not cluster or form converging arrays in isotope-ratio plots, they provide no evidence for either a quickly evolving, positive ?Nd, relatively high-206Pb/204Pb plume composition, or a plume source dominated by mantle with e-Nd of -3 to ~0.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ODP Hole 801C penetrates >400 m into 170-Ma oceanic basement formed at a fast-spreading ridge. Most basalts are slightly (10-20%) recrystallized to saponite, calcite, minor celadonite and iron oxyhydroxides, and trace pyrite. Temperatures estimated from oxygen isotope data for secondary minerals are 5-100°C, increasing downward. At the earliest stage, dark celadonitic alteration halos formed along fractures and celadonite, and quartz and chalcedony formed in veins from low-temperature (<100°C) hydrothermal fluids. Iron oxyhydroxides subsequently formed in alteration halos along fractures where seawater circulated, and saponite and pyrite developed in the host rock and in zones of restricted seawater flow under more reducing conditions. Chemical changes include variably elevated K, Rb, Cs, and H2O; local increases in FeT, Ba, Th, and U; and local losses of Mg and Ni. Secondary carbonate veins have 87Sr/86Sr = 0.706337 - 0.707046, and a negative correlation with d18O results from seawater-basalt interaction. Carbonates could have formed at any time since the formation of Site 801 crust. Variable d13C values (-11.2? to 2.9?) reflect the incorporation of oxidized organic carbon from intercalated sediments and changes in the d13C of seawater over time. Compared to other oceanic basements, a major difference at Site 801 is the presence of two hydrothermal silica-iron deposits that formed from low-temperature hydrothermal fluids at the spreading axis. Basalts associated with these horizons are intensely altered (60-100%) to phyllosilicates, calcite, K-feldspar, and titanite; and exhibit large increases in K, Rb, Cs, Ba, H2O, and CO2, and losses of FeT, Mn, Mg, Ca, Na, and Sr. These effects may be common in crust formed at fast-spreading rates, but are not ubiquitous. A second important difference is that the abundance of brown oxidation halos along fractures at Site 801 is an order of magnitude less than at some other sites (2% vs. 20-30%). Relatively smooth basement topography (<100 m) and high sedimentation rate (8 m/Ma) probably restricted the access of oxygenated seawater. Basement lithostratigraphy and early low-temperature hydrothermal alteration and mineral precipitation in fractures at the spreading axis controlled permeability and limited later flow of oxygenated seawater to restricted depth intervals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents data on the chemical composition of iron-manganese nodules and associated sediments collected during the 35th voyage of the R/V "Vityaz" in 1962. The samples were made available to the author by Prof, P. L. Bezrukov. Data on the general distribution of manganese nodules at the bottom of the Indian Ocean were already given by P. L. Bezrukov (1962, 1963). Here the author analyzed the geochemistry of nodules samples from seven stations and four samples from the associated sediments. The analysis separates the outer layer of nodules from their apparent internal core.