955 resultados para Three-dimensional image


Relevância:

100.00% 100.00%

Publicador:

Resumo:

HYPOTHESIS: During total shoulder arthroplasty (TSA), humeral head subluxation may be difficult to manage. Furthermore, there is a risk for postoperative recurrence of subluxation, affecting the outcome of TSA. An accurate evaluation of the subluxation is necessary to evaluate this risk. Currently, subluxation is measured in 2 dimensions (2D), usually relative to the glenoid face. The goal of this study was to extend this measure to 3 dimensions (3D) to compare glenohumeral and scapulohumeral subluxation and to evaluate the association of subluxation with the glenoid version. MATERIALS AND METHODS: The study analyzed 112 computed tomography scans of osteoarthritic shoulders. We extended the usual 2D definition of glenohumeral subluxation, scapulohumeral subluxation, and glenoid version by measuring their orientation in 3D relative to the scapular plane and the scapular axis. We evaluated statistical associations between subluxation and version in 2D and 3D. RESULTS: Orientation of subluxation and version covered all sectors of the glenoid surface. Scapulohumeral subluxation and glenoid version were highly correlated in amplitude (R(2) = 0.71; P < .01) and in orientation (R(2) = 0.86; P < .01). Approximately every degree of glenoid version induced 1% of scapulohumeral subluxation in the same orientation of the version. Conversely, glenohumeral subluxation was not correlated to glenoid version in 2D or in 3D. CONCLUSIONS: Orientation of the humeral subluxation is rarely within the arbitrary computed tomography plane and should therefore be measured in 3D to detect out-of-plane subluxation. Scapulohumeral subluxation and glenoid version measured in 3D could bring valuable information for decision making during TSA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A numerical study is presented of the third-dimensional Gaussian random-field Ising model at T=0 driven by an external field. Standard synchronous relaxation dynamics is employed to obtain the magnetization versus field hysteresis loops. The focus is on the analysis of the number and size distribution of the magnetization avalanches. They are classified as being nonspanning, one-dimensional-spanning, two-dimensional-spanning, or three-dimensional-spanning depending on whether or not they span the whole lattice in different space directions. Moreover, finite-size scaling analysis enables identification of two different types of nonspanning avalanches (critical and noncritical) and two different types of three-dimensional-spanning avalanches (critical and subcritical), whose numbers increase with L as a power law with different exponents. We conclude by giving a scenario for avalanche behavior in the thermodynamic limit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spanning avalanches in the 3D Gaussian Random Field Ising Model (3D-GRFIM) with metastable dynamics at T=0 have been studied. Statistical analysis of the field values for which avalanches occur has enabled a Finite-Size Scaling (FSS) study of the avalanche density to be performed. Furthermore, a direct measurement of the geometrical properties of the avalanches has confirmed an earlier hypothesis that several types of spanning avalanches with two different fractal dimensions coexist at the critical point. We finally compare the phase diagram of the 3D-GRFIM with metastable dynamics with the same model in equilibrium at T=0.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of vacancy concentration on the behavior of the three-dimensional random field Ising model with metastable dynamics is studied. We have focused our analysis on the number of spanning avalanches which allows us a clear determination of the critical line where the hysteresis loops change from continuous to discontinuous. By a detailed finite-size scaling analysis we determine the phase diagram and numerically estimate the critical exponents along the whole critical line. Finally, we discuss the origin of the curvature of the critical line at high vacancy concentration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The creation of three-dimensionally engineered nanoporous architectures via covalently interconnected nanoscale building blocks remains one of the fundamental challenges in nanotechnology. Here we report the synthesis of ordered, stacked macroscopic three-dimensional (3D) solid scaffolds of graphene oxide (GO) fabricated via chemical cross-linking of two-dimensional GO building blocks. The resulting 3D GO network solids form highly porous interconnected structures, and the controlled reduction of these structures leads to formation of 3D conductive graphene scaffolds. These 3D architectures show promise for potential applications such as gas storage; CO2 gas adsorption measurements carried out under ambient conditions show high sorption capacity, demonstrating the possibility of creating new functional carbon solids starting with two-dimensional carbon layers

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop an algorithm that computes the gravitational potentials and forces on N point-masses interacting in three-dimensional space. The algorithm, based on analytical techniques developed by Rokhlin and Greengard, runs in order N time. In contrast to other fast N-body methods such as tree codes, which only approximate the interaction potentials and forces, this method is exact ?? computes the potentials and forces to within any prespecified tolerance up to machine precision. We present an implementation of the algorithm for a sequential machine. We numerically verify the algorithm, and compare its speed with that of an O(N2) direct force computation. We also describe a parallel version of the algorithm that runs on the Connection Machine in order 0(logN) time. We compare experimental results with those of the sequential implementation and discuss how to minimize communication overhead on the parallel machine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new formulation for recovering the structure and motion parameters of a moving patch using both motion and shading information is presented. It is based on a new differential constraint equation (FICE) that links the spatiotemporal gradients of irradiance to the motion and structure parameters and the temporal variations of the surface shading. The FICE separates the contribution to the irradiance spatiotemporal gradients of the gradients due to texture from those due to shading and allows the FICE to be used for textured and textureless surface. The new approach, combining motion and shading information, leads directly to two different contributions: it can compensate for the effects of shading variations in recovering the shape and motion; and it can exploit the shading/illumination effects to recover motion and shape when they cannot be recovered without it. The FICE formulation is also extended to multiple frames.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Artifacts made by humans, such as items of furniture and houses, exhibit an enormous amount of variability in shape. In this paper, we concentrate on models of the shapes of objects that are made up of fixed collections of sub-parts whose dimensions and spatial arrangement exhibit variation. Our goals are: to learn these models from data and to use them for recognition. Our emphasis is on learning and recognition from three-dimensional data, to test the basic shape-modeling methodology. In this paper we also demonstrate how to use models learned in three dimensions for recognition of two-dimensional sketches of objects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation examines the auditory-perceptual theory of speech perception and the concept and validity of perceptual target zones for vowels.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An instrument is described which carries three orthogonal geomagnetic field sensors on a standard meteorological balloon package, to sense rapid motion and position changes during ascent through the atmosphere. Because of the finite data bandwidth available over the UHF radio link, a burst sampling strategy is adopted. Bursts of 9s of measurements at 3.6Hz are interleaved with periods of slow data telemetry lasting 25s. Calculation of the variability in each channel is used to determine position changes, a method robust to periods of poor radio signals. During three balloon ascents, variability was found repeatedly at similar altitudes, simultaneously in each of three orthogonal sensors carried. This variability is attributed to atmospheric motions. It is found that the vertical sensor is least prone to stray motions, and that the use of two horizontal sensors provides no additional information over a single horizontal sensor