873 resultados para Thin-walled structures Design and construction
Resumo:
The current version of the SUDAS Specifications will be revised to accommodate the DOT’s utilization of SUDAS. The revisions to the SUDAS Specifications will be based upon the recommendations from Phase 1. In some instances, the recommendations will require reorganization of portions of the SUDAS Specifications. Upon incorporation of the Phase 1 recommendations, each applicable Division of the SUDAS Specifications will be updated into the active-imperative style, utilizing the 3- part specification format currently utilized by SUDAS.
Resumo:
The current version of the SUDAS Specifications will be revised to accommodate the DOT’s utilization of SUDAS. The revisions to the SUDAS Specifications will be based upon the recommendations from Phase 1. In some instances, the recommendations will require reorganization of portions of the SUDAS Specifications. Upon incorporation of the Phase 1 recommendations, each applicable Division of the SUDAS Specifications will be updated into the active-imperative style, utilizing the 3- part specification format currently utilized by SUDAS.
Resumo:
Three pavement design software packages were compared with regards to how they were different in determining design input parameters and their influences on the pavement thickness. StreetPave designs the concrete pavement thickness based on the PCA method and the equivalent asphalt pavement thickness. The WinPAS software performs both concrete and asphalt pavements following the AASHTO 1993 design method. The APAI software designs asphalt pavements based on pre-mechanistic/empirical AASHTO methodology. First, the following four critical design input parameters were identified: traffic, subgrade strength, reliability, and design life. The sensitivity analysis of these four design input parameters were performed using three pavement design software packages to identify which input parameters require the most attention during pavement design. Based on the current pavement design procedures and sensitivity analysis results, a prototype pavement design and sensitivity analysis (PD&SA) software package was developed to retrieve the pavement thickness design value for a given condition and allow a user to perform a pavement design sensitivity analysis. The prototype PD&SA software is a computer program that stores pavement design results in database that is designed for the user to input design data from the variety of design programs and query design results for given conditions. The prototype Pavement Design and Sensitivity Analysis (PA&SA) software package was developed to demonstrate the concept of retrieving the pavement design results from the database for a design sensitivity analysis. This final report does not include the prototype software which will be validated and tested during the next phase.
Resumo:
The previous research performed laboratory experiments to measure the impacts of the curing on the indirect tensile strength of both CIR-foam and CIR-emulsion mixtures. However, a fundamental question was raised during the previous research regarding a relationship between the field moisture content and the laboratory moisture content. Therefore, during this research, both temperature and moisture conditions were measured in the field by embedding the sensors at a midpoint and a bottom of the CIR layer. The main objectives of the research are to: (1) measure the moisture levels throughout a CIR layer and (2) develop a moisture loss index to determine the optimum curing time of CIR layer before HMA overlay. To develop a set of moisture loss indices, the moisture contents and temperatures of CIR-foam and CIR-emulsion layers were monitored for five months. Based on the limited field experiment, the following conclusions are derived: 1. The moisture content of the CIR layer can be monitored accurately using the capacitance type moisture sensor. 2. The moisture loss index for CIR layers is a viable tool in determining the optimum timing for an overlay without measuring actual moisture contents. 3. The modulus back-calculated based on the deflection measured by FWD seemed to be in a good agreement with the stiffness measured by geo-gauge. 4. The geo-gauge should be considered for measuring the stiffness of CIR layer that can be used to determine the timing of an overlay. 5. The stiffness of CIR-foam layer increased as a curing time increased and it seemed to be more influenced by a temperature than moisture content. The developed sets of moisture loss indices based on the field measurements will help pavement engineers determine an optimum timing of an overlay without continually measuring moisture conditions in the field using a nuclear gauge.
Resumo:
Bridge rail and approach guardrails provide safety to drivers by shielding more hazardous objects and redirecting vehicles to the roadway. However, guardrail can increase both the initial cost and maintenance cost of a bridge, while adding another object that may be struck by vehicles. Most existing low volume road (LVR) bridges in the state of Iowa are currently indicated to not possess bridge rail meeting “current acceptable standards”. The primary objective of the research summarized in this report was to provide the nations bridge and approach rail state of practice and perform a state wide crash analysis on bridge rails and approach guardrails on LVR bridges in Iowa. In support of this objective, the criteria and guidelines used by other bridge owners were investigated, non-standard and innovative bridge and approach guardrails for LVR’s were investigated, and descriptive, statistical and economical analyses were performed on a state wide crash analysis. The state wide crash analysis found the overall number of crashes at/on the more than 17,000+ inventoried and non-inventoried LVR bridges in Iowa was fewer than 350 crashes over an eight year period, representing less than 0.1% of the statewide reportable crashes. In other words, LVR bridge crashes are fairly rare events. The majority of these crashes occurred on bridges with a traffic volume less than 100 vpd and width less than 24 ft. Similarly, the majority of the LVR bridges possess similar characteristics. Crash rates were highest for bridges with lower traffic volumes, narrower widths, and negative relative bridge widths (relative bridge width is defined as: bridge width minus roadway width). Crash rate did not appear to be effected by bridge length. Statistical analysis confirmed that the frequency of vehicle crashes was higher on bridges with a lower width compared to the roadway width. The frequency of crashes appeared to not be impacted by weather conditions, but crashes may be over represented at night or in dark conditions. Statistical analysis revealed that crashes that occurred on dark roadways were more likely to result in major injury or fatality. These findings potentially highlight the importance of appropriate delineation and signing. System wide, benefit-cost (B/C) analyses yielded very low B/C ratios for statewide bridge rail improvements. This finding is consistent with the aforementioned recommendation to address specific sites where safety concerns exist.
Resumo:
Several road construction projects involving concrete overlays at the state and county levels in Iowa in 2009 were studied for construction techniques and methods. The projects that were evaluated consisted of sites in four Iowa counties: Osceola, Worth, Poweshiek, and Johnson counties. The construction techniques and methods that were studied included concrete overlays and material usage. By evaluating these methods, highway agencies can explore different ways of making road construction less costly and can minimize the amount of time that the traveling public is exposed to road construction.
Resumo:
In the previous study, moisture loss indices were developed based on the field measurements from one CIR-foam and one CIR-emulsion construction sites. To calibrate these moisture loss indices, additional CIR construction sites were monitored using embedded moisture and temperature sensors. In addition, to determine the optimum timing of an HMA overlay on the CIR layer, the potential of using the stiffness of CIR layer measured by geo-gauge instead of the moisture measurement by a nuclear gauge was explored. Based on the monitoring the moisture and stiffness from seven CIR project sites, the following conclusions are derived: 1. In some cases, the in-situ stiffness remained constant and, in other cases, despite some rainfalls, stiffness of the CIR layers steadily increased during the curing time. 2. The stiffness measured by geo-gauge was affected by a significant amount of rainfall. 3. The moisture indices developed for CIR sites can be used for predicting moisture level in a typical CIR project. The initial moisture content and temperature were the most significant factors in predicting the future moisture content in the CIR layer. 4. The stiffness of a CIR layer is an extremely useful tool for contractors to use for timing their HMA overlay. To determine the optimal timing of an HMA overlay, it is recommended that the moisture loss index should be used in conjunction with the stiffness of the CIR layer.
Resumo:
Based on previous National Bridge Inventory data, the state of Iowa has nearly 20,000 bridges on low-volume roads (LVRs). Thus, these bridges are the responsibility of the county engineers. Of the bridges on the county roads, 24 percent are structurally deficient and 5 percent are functionally obsolete. A large number of the older bridges on the LVRs are built on timber piling with timber back walls. In many cases, as timber abutments and piers age, the piling and back wall planks deteriorate at a rate faster than the bridge superstructure. As a result, a large percentage of the structurally deficient bridges on LVRs are classified as such because of the condition of the timber substructure elements. As funds for replacing bridges decline and construction costs increase, effective rehabilitation and strengthening techniques for extending the life of the timber substructures in bridges with structurally sound superstructures has become even more important. Several counties have implemented various techniques to strengthen/repair damaged piling, however, there is minimal data documenting the effectiveness of these techniques. There are numerous instances where cracked and failed pilings have been repaired. However, there are no experimental data on the effectiveness of the repairs or on the percentage of load transferred from the superstructure to the sound pile below. To address the research needs, a review and evaluation of current maintenance and rehabilitation methods was completed. Additionally, a nationwide survey was conducted to learn the methods used beyond Iowa. Field investigation and live-load testing of bridges with certain Iowa methods was completed. Lastly, laboratory testing of new strengthening and rehabilitation methods was performed.
Resumo:
For several years the Iowa Department of Transportation (DOT), Iowa State University, the Federal Highway Administration, and several Iowa counties have been working to develop accelerated bridge construction (ABC) concepts, details, and processes. Throughout this development, much has been learned and has resulted in Iowa being viewed as a national leader in the area of ABC. However, at this time, the Office of Bridges and Structures does not have a complete set of working standards nor design examples to accompany ABC portions of the bridge design manual (now called the Load and Resistance Factor Design/LRFD Bridge Design Manual). During the fall of 2013, the Iowa DOT constructed a bridge on IA 92 in Cass County using an ABC technique known as slide-in bridge construction. During the design of the Cass County Bridge, several questions were raised about the performance of critical design and construction details: the pile-to-pile cap connection and the polytetrafluoroethylene (PTFE) coated bearing pads on which the bridge would slide. The timing of this specific need and the initiation of this project offered a unique opportunity to provide significant short- and long-term value to the Office of Bridges and Structures. Several full-scale laboratory tests, which included several variations of the pile-to-pile cap connection and bearing pad slides, were completed. These tests proved that the connection was capable of achieving the desired capacity and that the expected coefficient of friction of the bearing pads was reasonably low. Finally, a design tool was developed for the Office of Bridges and Structures to be used on future projects that might benefit from a precast pile cap.
Resumo:
The objective of the Phase 3 project was to re-write the identified sections of the SUDAS specifications into the imperative mood, consistent with the format utilized during the Phase 2 project and other work completed by SUDAS staff. Figures for the identified sections were updated to match the new SUDAS format, similar to the Iowa DOT Standard Road Plans. While the Iowa DOT does not intend to incorporate all of the following sections into their specification book, consistency with the Iowa DOT specifications was strived for wherever possible. Maintaining consistency between the specifications simplifies design, bidding, and construction.
Resumo:
This report concerns a proposed Parkway and Scenic Highway along both sides of the Missouri River in Harrison, Pottawattamie and Mills County in Iowa and Washington, Douglas and Sarpy Counties in Nebraska. This Parkway will make the Missouri River valley accessible to the public, link existing and planned attractions and facilitate planned development while at the same time preserving for posterity the best of the natural attributes of the area.
Resumo:
3D engineered modeling is a relatively new and developing technology that can provide numerous benefits to owners, engineers, contractors, and the general public. This manual is for highway agencies that are considering or are in the process of switching from 2D plan sets to 3D engineered models in their highway construction projects. It will discuss some of the benefits, applications, limitations, and implementation considerations for 3D engineered models used for survey, design, and construction. Note that is not intended to cover all eventualities in all states regarding the deployment of 3D engineered models for highway construction. Rather, it describes how one state—Iowa—uses 3D engineered models for construction of highway projects, from planning and surveying through design and construction.
Resumo:
With an ever increasing desire to utilize accelerated bridge construction (ABC) techniques, it is becoming critical that bridge designers and contractors have confidence in typical details. The Keg Creek Bridge on US 6 in Iowa was a recent ABC example that utilized connection details that had been utilized elsewhere. The connection details used between the drilled shaft and pier column and between the pier column and the pier cap were details needing evaluation. These connection details utilized grouted couplers that have been tested by others with mixed results—some indicating quality performance and others indicating questionable performance. There was a need to test these couplers to gain an understanding of their performance in likely Iowa details and to understand how their performance might be impacted by different construction processes. The objective of the work was to perform laboratory testing and evaluation of the grouted coupler connection details utilized on precast concrete elements for the Keg Creek Bridge. The Bridge Engineering Center (BEC), with the assistance of the Iowa Department of Transportation (DOT) Office of Bridges and Structures, developed specimens representative of the Keg Creek Bridge connections for testing under static and fatigue loads in the structures laboratory. The specimens were also evaluated for their ability to resist the intrusion of water and chlorides. Evaluation of their performance was made through comparisons with design assumptions and previous research, as well as the physical performance of the coupled connections.
Resumo:
Multi-span pre-tensioned pre-stressed concrete beam (PPCB) bridges made continuous usually experience a negative live load moment region over the intermediate supports. Conventional thinking dictates that sufficient reinforcement must be provided in this region to satisfy the strength and serviceability requirements associated with the tensile stresses in the deck. The American Association of State Highway and Transportation Officials (AASHTO) Load and Resistance Factor Design (LRFD) Bridge Design Specifications recommend the negative moment reinforcement (b2 reinforcement) be extended beyond the inflection point. Based upon satisfactory previous performance and judgment, the Iowa Department of Transportation (DOT) Office of Bridges and Structures (OBS) currently terminates b2 reinforcement at 1/8 of the span length. Although the Iowa DOT policy results in approximately 50% shorter b2 reinforcement than the AASHTO LRFD specifications, the Iowa DOT has not experienced any significant deck cracking over the intermediate supports. The primary objective of this project was to investigate the Iowa DOT OBS policy regarding the required amount of b2 reinforcement to provide the continuity over bridge decks. Other parameters, such as termination length, termination pattern, and effects of the secondary moments, were also studied. Live load tests were carried out on five bridges. The data were used to calibrate three-dimensional finite element models of two bridges. Parametric studies were conducted on the bridges with an uncracked deck, a cracked deck, and a cracked deck with a cracked pier diaphragm for live load and shrinkage load. The general conclusions were as follows: -- The parametric study results show that an increased area of the b2 reinforcement slightly reduces the strain over the pier, whereas an increased length and staggered reinforcement pattern slightly reduce the strains of the deck at 1/8 of the span length. -- Finite element modeling results suggest that the transverse field cracks over the pier and at 1/8 of the span length are mainly due to deck shrinkage. -- Bridges with larger skew angles have lower strains over the intermediate supports. -- Secondary moments affect the behavior in the negative moment region. The impact may be significant enough such that no tensile stresses in the deck may be experienced.
Resumo:
This report describes a short-term study undertaken to investigate the potential for using dense three-dimensional (3D) point clouds generated from light detection and ranging (LIDAR) and photogrammetry to assess roadway roughness. Spatially continuous roughness maps have potential for the identification of localized roughness features, which would be a significant improvement over traditional profiling methods. This report specifically illustrates the use of terrestrial laser scanning (TLS) and photogrammetry using a process known as structure from motion (SFM) to acquire point clouds and illustrates the use of these point clouds in evaluating road roughness. Five roadway sections were chosen for scanning and testing: three gravel road sections, one portland cement concrete (PCC) section, and one asphalt concrete (AC) section. To compare clouds obtained from terrestrial laser scanning and photogrammetry, the coordinates of the clouds for the same section on the same date were matched using open source computer code. The research indicates that the technologies described are very promising for evaluating road roughness. The major advantage of both technologies is the large amount of data collected, which allows the evaluation of the full surface. Additional research is needed to further develop the use of dense 3D point clouds for roadway assessment.