880 resultados para Thermodynamic functions
Resumo:
Leaves comprise most of the vegetative body of tank bromeliads and are usually subjected to strong longitudinal gradients. For instance, while the leaf base is in contact with the water accumulated in the tank, the more light-exposed middle and upper leaf sections have no direct access to this water reservoir. Therefore, the present study attempted to investigate whether different leaf portions of Guzmania monostachia, a tank-forming C(3)-CAM bromeliad, play distinct physiological roles in response to water shortage, which is a major abiotic constraint in the epiphytic habitat. Internal and external morphological features, relative water content, pigment composition and the degree of CAM expression were evaluated in basal, middle and apical leaf portions in order to allow the establishment of correlations between the structure and the functional importance of each leaf region. Results indicated that besides marked structural differences, a high level of functional specialization is also present along the leaves of this bromeliad. When the tank water was depleted, the abundant hydrenchyma of basal leaf portions was the main reservoir for maintaining a stable water status in the photosynthetic tissues of the apical region. In contrast, the CAM pathway was intensified specifically in the upper leaf section, which is in agreement with the presence of features more suitable for the occurrence of photosynthesis at this portion. Gas exchange data indicated that internal recycling of respiratory CO(2) accounted for virtually all nighttime acid accumulation, characterizing a typical CAM-idling pathway in the drought-exposed plants. Altogether, these data reveal a remarkable physiological complexity along the leaves of G. monostachia, which might be a key adaptation to the intermittent water supply of the epiphytic niche. (C) 2009 Elsevier GmbH. All rights reserved.
Resumo:
Purkinje cell degeneration (pcd) mice have a mutation within the gene encoding cytosolic carboxypeptidase 1 (CCP1/Nna1), which has homology to metallocarboxypeptidases. To assess the function of CCP1/Nna1, quantitative proteomics and peptidomics approaches were used to compare proteins and peptides in mutant and wild-type mice. Hundreds of peptides derived from cytosolic and mitochondrial proteins are greatly elevated in pcd mouse hypothalamus, amygdala, cortex, prefrontal cortex, and striatum. However, the major proteins detected on 2-D gel electrophoresis were present in mutant and wild-type mouse cortex and hypothalamus at comparable levels, and proteasome activity is normal in these brain regions of pcd mice, suggesting that the increase in cellular peptide levels in the pcd mice is due to reduced degradation of the peptides downstream of the proteasome. Both nondegenerating and degenerating regions of pcd mouse brain, but not wild-type mouse brain, show elevated autophagy, which can be triggered by a decrease in amino acid levels. Taken together with previous studies on CCP1/Nna1, these data suggest that CCP1/Nna1 plays a role in protein turnover by cleaving proteasome-generated peptides into amino acids and that decreased peptide turnover in the pcd mice leads to cell death.-Berezniuk, I., Sironi, J., Callaway, M. B., Castro, L. M., Hirata, I. Y., Ferro, E. S., Fricker, L. D. CCP1/Nna1 functions in protein turnover in mouse brain: Implications for cell death in Purkinje cell degeneration mice. FASEB J. 24, 1813-1823 (2010). www.fasebj.org
Resumo:
A novel technique for selecting the poles of orthonormal basis functions (OBF) in Volterra models of any order is presented. It is well-known that the usual large number of parameters required to describe the Volterra kernels can be significantly reduced by representing each kernel using an appropriate basis of orthonormal functions. Such a representation results in the so-called OBF Volterra model, which has a Wiener structure consisting of a linear dynamic generated by the orthonormal basis followed by a nonlinear static mapping given by the Volterra polynomial series. Aiming at optimizing the poles that fully parameterize the orthonormal bases, the exact gradients of the outputs of the orthonormal filters with respect to their poles are computed analytically by using a back-propagation-through-time technique. The expressions relative to the Kautz basis and to generalized orthonormal bases of functions (GOBF) are addressed; the ones related to the Laguerre basis follow straightforwardly as a particular case. The main innovation here is that the dynamic nature of the OBF filters is fully considered in the gradient computations. These gradients provide exact search directions for optimizing the poles of a given orthonormal basis. Such search directions can, in turn, be used as part of an optimization procedure to locate the minimum of a cost-function that takes into account the error of estimation of the system output. The Levenberg-Marquardt algorithm is adopted here as the optimization procedure. Unlike previous related work, the proposed approach relies solely on input-output data measured from the system to be modeled, i.e., no information about the Volterra kernels is required. Examples are presented to illustrate the application of this approach to the modeling of dynamic systems, including a real magnetic levitation system with nonlinear oscillatory behavior.
Resumo:
We present a complete description of the analytic properties of the Barnes double zeta and Gamma functions. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
In the present paper we obtain a new homological version of the implicit function theorem and some versions of the Darboux theorem. Such results are proved for continuous maps on topological manifolds. As a consequence. some versions of these classic theorems are proved when we consider differenciable (not necessarily C-1) maps.
Resumo:
The thermodynamic properties of a selected set of benchmark hydrogen-bonded systems (acetic acid dimer and the complexes of acetic acid with acetamide and methanol) was studied with the goal of obtaining detailed information on solvent effects on the hydrogen-bonded interactions using water, chloroform, and n-heptane as representatives for a wide range in the dielectric constant. Solvent effects were investigated using both explicit and implicit solvation models. For the explicit description of the solvent, molecular dynamics and Monte Carlo simulations in the isothermal isobaric (NpT) ensemble combined with the free energy perturbation technique were performed to determine solvation free energies. Within the implicit solvation approach, the polarizable continuum model and the conductor-like screening model were applied. Combination of gas phase results with the results obtained from the different solvation models through an appropriate thermodynamic cycle allows estimation of complexation free energies, enthalpies, and the respective entropic contributions in solution. Owing to the strong solvation effects of water the cyclic acetic acid dimer is not stable in aqueous solution. In less polar solvents the double hydrogen bond structure of the acetic acid dimer remains stable. This finding is in agreement with previous theoretical and experimental results. A similar trend as for the acetic acid dimer is also observed for the acetamide complex. The methanol complex was found to be thermodynamically unstable in gas phase as well as in any of the three solvents. (C) 2010 Wiley Periodicals, Inc. J Comput Chem 31: 2046-2055, 2010
Resumo:
We propose a new technique to analyze total reaction cross sections. In this technique, which has been previously applied to fusion reactions, the experimental data are used to build a dimensionless reaction function, which does not depend oil the system size or details of the optical potential. In this way, total reaction cross sections for different systems can be directly compared. We employ this technique to perform a systematic study of reaction cross sections of weakly bound systems in different mass ranges, and compare their reaction functions with the ones of tightly bound systems with similar masses. We show that breakup reactions and neutron transfers in halo systems lead to large reaction functions, well above the ones of typical tightly or weakly bound stable systems. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Materials used in current technological approaches for the removal of mercury lack selectivity. Given that this is one of the main features of supramolecular chemistry, receptors based on calix[4]arene and calix[4]resorcarene containing functional groups able to interact selectively with polluting ions while discriminating against biologically essential ones were designed. Thus two receptors, a partially functionalized calix[4]arene derivative, namely, 5,11,17,23-tetra-tert-butyl [25-27-bis(diethyl thiophosphate amino)dihydroxy] calix[4]arene (1) and a fully functionalized calix[4]resorcarene, 4,6,10,12,16,18,22,24-diethyl thiophosphate calix[4]resorcarene (2) are introduced. Mercury(II) was the identified target due to the environmental and health problems associated with its presence in water Thus following the synthesis and characterization of 1 and 2 in solution ((1)HNMR) and in the solid state (X-ray crystallography) the sequence of experimental events leading to cation complexation studies in acetonitrile and methanol ((1)H NMR, conductance, potentiometric, and calorimetric measurements) with the aim of assessing their behavior as mercury selective receptors are described. The cation selectivity pattern observed in acetonitrile follows the sequence Hg(II) > Cu(II) > Ag(I). In methanol 1 is also selective for Hg(II) relative to Ag(I) but no interaction takes place between this receptor and Cu(II) in this solvent. Based on previous results and experimental facts shown in this paper, it is concluded that the complexation observed with Cu(II) in acetonitrile occurs through the acetonitrile-receptor adduct rather than through the free ligand. Receptor 2 has an enhanced capacity for uptaking Hg(II) but forms metalate complexes with Cu(II). These studies in solution guided the inmobilization of receptor 1 into a silica support to produce a new and recyclable material for the removal of Hg(II) from water. An assessment on its capacity to extract this cation from water relative to Cu(II) and Ag (I) shows that the cation selectivity pattern of the inmobilized receptor is the same as that observed for the free receptor in methanol. These findings demonstrate that fundamental studies play a critical role in the selection of the receptor to be attached to silicates as well as in the reaction medium used for the synthesis of the new decontaminating agent.
Structural and thermodynamic analysis of thrombin:suramin interaction in solution and crystal phases
Resumo:
Suramin is a hexasulfonated naphthylurea which has been recently characterized as a non-competitive inhibitor of human alpha-thrombin activity over fibrinogen, although its binding site and mode of interaction with the enzyme remain elusive. Here, we determined two X-ray structure of the thrombin: suramin complex, refined at 2.4 angstrom resolution. While a single thrombin: suramin complex was found in the asymmetric unit cell of the crystal, some of the crystallographic contacts with symmetrically related molecules are mediated by both the enzyme and the ligand. Molecular dynamics simulations with the 1:1 complex demonstrate a large rearrangement of suramin in the complex, but with the protein scaffold and the more extensive protein-ligand regions keep unchanged. Small-angle X-ray scattering measurements at high micromolar concentration demonstrate a suramin-induced dimerization of the enzyme. These data indicating a dissimilar binding mode in the monomeric and oligomeric states, with a monomeric, 1:1 complex to be more likely to exist at the thrombin physiological, nanomolar concentration range. Collectively, close understanding on the structural basis for interaction is given which might establish a basis for design of suramin analogues targeting thrombin. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
Resumo:
A thermodynamic study involving 7-nitro-1,3,5-triaza adamantane, 1, and its interaction with metal cations in nonaqueous media is first reported. Solubility data of 1 in various solvents were used to derive the standard Gibbs energies of solution, Delta G(s)degrees in these solvents. The effect of solvation in the different media was assessed from the Gibbs energy of transfer taking acetonitrile as a reference solvent. (1)H NMR studies of the interaction of 1 and metal cations were carried out in CD(3)CN and CD(3)OD and the data are reported. Conductance measurements revealed that this ligand forms lead(II) or zinc complexes of 1: 1 stoichiometry in acetonitrile. It also revealed a stoichiometry of two molecules of 1 per mercury(II) and two cadmiu (II) ions per molecule of 1. The addition of silver salt to 1 led to the precipitation of the silver-1 complex which was isolated and characterized by X-ray crystallography. At variance with conductance measurements in solution, in the solid state the X-ray structure show`s a 1:1 stoichiometry in the Hg(II) complex. The themiodynamics of complexation of 1 and these cations provide a quantitative assessment of the selective behavior of this ligand for ions of environmental relevance.
Resumo:
Explicitly orbital-dependent approximations to the exchange-correlation energy functional of density functional theory typically not only depend on the single-particle Kohn-Sham orbitals but also on their occupation numbers in the ground-state Slater determinant. The variational calculation of the corresponding exchange-correlation potentials with the optimized effective potential (OEP) method therefore also requires a variation of the occupation numbers with respect to a variation in the effective single-particle potential, which is usually not taken into account. Here it is shown under which circumstances this procedure is justified.
Resumo:
The structural stability of a peroxidase, a dimeric protein from royal palm tree (Roystonea regia) leaves, has been characterized by high-sensitivity differential scanning calorimetry, circular dichroism, steady-state tryptophan fluorescence and analytical ultracentifugation under different solvent conditions. It is shown that the thermal and chemical (using guanidine hydrochloride (Gdn-HCl)) folding/unfolding of royal palm tree peroxidase (RPTP) at pH 7 is a reversible process involving a highly cooperative transition between the folded dimer and unfolded monomers, with a free stabilization energy of about 23 kcal per mol of monomer at 25 degrees C. The structural stability of RPTP is pH-dependent. At pH 3, where ion pairs have disappeared due to protonation, the thermally induced denaturation of RPTP is irreversible and strongly dependent upon the scan rate, suggesting that this process is under kinetic control. Moreover, thermally induced transitions at this pH value are dependent on the protein concentration, allowing it to be concluded that in solution RPTP behaves as dimer, which undergoes thermal denaturation coupled with dissociation. Analysis of the kinetic parameters of RPTP denaturation at pH 3 was accomplished on the basis of the simple kinetic scheme N ->(k) D, where k is a first-order kinetic constant that changes with temperature, as given by the Arrhenius equation; N is the native state, and D is the denatured state, and thermodynamic information was obtained by extrapolation of the kinetic transition parameters to an infinite heating rate. Obtained in this way, the value of RPTP stability at 25 degrees C is ca. 8 kcal per mole of monomer lower than at pH 7. In all probability, this quantity reflects the contribution of ion pair interactions to the structural stability of RPTP. From a comparison of the stability of RPTP with other plant peroxidases it is proposed that one of the main factors responsible for the unusually high stability of RPTP which enhances its potential use for biotechnological purposes, is its dimerization. (c) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
Three plant proteinase inhibitors BbKI (kallikrein inhibitor) and BbCI (cruzipain inhibitor) from Bauhinia bouhinioides, and a BrTI (trypsin inhibitor) from B. rufa, were examined for other effects in Callosobruchus maculatus development; of these only BrTI affected bruchid emergence. BrTI and BbKI share 81% identities in their primary sequences and the major differences between them are the regions comprising the RGD and RGE motifs in BrTI. These sequences were shown to be essential for BrTI insecticidal activity, since a modified BbKI [that is a recombinant form (BbKIm) with some amino acid residues replaced by those found in BrTI sequence] also strongly inhibited insect development. By using synthetic peptides related to the BrTI sequence, YLEAPVARGDGGLA-NH(2) (RGE) and IVYYPDRGETGL-NH(2) (RGE), it was found that the peptide with an RGE sequence was able to block normal development of C. maculatus larvae (ED(50) 0.16% and LD(50) 0.09%), this being even more effective than the native protein. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, the relationship between the filter coefficients and the scaling and wavelet functions of the Discrete Wavelet Transform is presented and exemplified from a practical point-of-view. The explanations complement the wavelet theory, that is well documented in the literature, being important for researchers who work with this tool for time-frequency analysis. (c) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents the formulation of a combinatorial optimization problem with the following characteristics: (i) the search space is the power set of a finite set structured as a Boolean lattice; (ii) the cost function forms a U-shaped curve when applied to any lattice chain. This formulation applies for feature selection in the context of pattern recognition. The known approaches for this problem are branch-and-bound algorithms and heuristics that explore partially the search space. Branch-and-bound algorithms are equivalent to the full search, while heuristics are not. This paper presents a branch-and-bound algorithm that differs from the others known by exploring the lattice structure and the U-shaped chain curves of the search space. The main contribution of this paper is the architecture of this algorithm that is based on the representation and exploration of the search space by new lattice properties proven here. Several experiments, with well known public data, indicate the superiority of the proposed method to the sequential floating forward selection (SFFS), which is a popular heuristic that gives good results in very short computational time. In all experiments, the proposed method got better or equal results in similar or even smaller computational time. (C) 2009 Elsevier Ltd. All rights reserved.