806 resultados para Teorema-H de boltzmann


Relevância:

10.00% 10.00%

Publicador:

Resumo:

La tesi è finalizzata ad una preliminare fase di sperimentazione di un algoritmo che, a partire da dati di acustica, sia in grado di classificare le specie di pesce presenti in cale mono e plurispecifiche. I dati sono stati acquisiti nella fascia costiera della Sicilia meridionale, durante alcune campagne di ricerca effettuate tra il 2002 e il 2011, dall’IAMC – CNR di Capo Granitola. Sono stati registrati i valori delle variabili ambientali e biotiche tramite metodologia acustica e della composizione dei banchi di pesci catturati tramite cale sperimentali: acciughe, sardine, suri, altre specie pelagiche e pesci demersali. La metodologia proposta per la classificazione dei segnali acustici nasce dalla fusione di logica fuzzy e teorema di Bayes, per dar luogo ad un approccio modellistico consistente in un compilatore naïve Bayes operante in ambiente fuzzy. Nella fattispecie si è proceduto alla fase di training del classificatore, mediante un learning sample di percentuali delle categorie ittiche sopra menzionate, e ai dati di alcune delle osservazioni acustiche, biotiche e abiotiche, rilevate dall’echosurvey sugli stessi banchi. La validazione del classificatore è stata effettuata sul test set, ossia sui dati che non erano stati scelti per la fase di training. Per ciascuna cala, sono stati infine tracciati dei grafici di dispersione/correlazione dei gruppi ittici e le percentuali simulate. Come misura di corrispondenza dei dati sono stati considerati i valori di regressione R2 tra le percentuali reali e quelle calcolate dal classificatore fuzzy naïve Bayes. Questi, risultando molto alti (0,9134-0,99667), validavano il risultato del classificatore che discriminava con accuratezza le ecotracce provenienti dai banchi. L’applicabilità del classificatore va comunque testata e verificata oltre i limiti imposti da un lavoro di tesi; in particolare la fase di test va riferita a specie diverse, a condizioni ambientali al contorno differenti da quelle riscontrate e all’utilizzo di learning sample meno estesi.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Una stella non è un sistema in "vero" equilibrio termodinamico: perde costantemente energia, non ha una composizione chimica costante nel tempo e non ha nemmeno una temperatura uniforme. Ma, in realtà, i processi atomici e sub-atomici avvengono in tempi così brevi, rispetto ai tempi caratteristici dell'evoluzione stellare, da potersi considerare sempre in equilibrio. Le reazioni termonucleari, invece, avvengono su tempi scala molto lunghi, confrontabili persino con i tempi di evoluzione stellare. Inoltre il gradiente di temperatura è dell'ordine di 1e-4 K/cm e il libero cammino medio di un fotone è circa di 1 cm, il che ci permette di assumere che ogni strato della stella sia uno strato adiabatico a temperatura uniforme. Di conseguenza lo stato della materia negli interni stellari è in una condizione di ``quasi'' equilibrio termodinamico, cosa che ci permette di descrivere la materia attraverso le leggi della Meccanica Statistica. In particolare lo stato dei fotoni è descritto dalla Statistica di Bose-Einstein, la quale conduce alla Legge di Planck; lo stato del gas di ioni ed elettroni non degeneri è descritto dalla Statistica di Maxwell-Boltzmann; e, nel caso di degenerazione, lo stato degli elettroni è descritto dalla Statistica di Fermi-Dirac. Nella forma più generale, l'equazione di stato dipende dalla somma dei contributi appena citati (radiazione, gas e degenerazione). Vedremo prima questi contributi singolarmente, e dopo li confronteremo tra loro, ottenendo delle relazioni che permettono di determinare quale legge descrive lo stato fisico di un plasma stellare, semplicemente conoscendone temperatura e densità. Rappresentando queste condizioni su un piano $\log \rho \-- \log T$ possiamo descrivere lo stato del nucleo stellare come un punto, e vedere in che stato è la materia al suo interno, a seconda della zona del piano in cui ricade. È anche possibile seguire tutta l'evoluzione della stella tracciando una linea che mostra come cambia lo stato della materia nucleare nelle diverse fasi evolutive. Infine vedremo come leggi quantistiche che operano su scala atomica e sub-atomica siano in grado di influenzare l'evoluzione di sistemi enormi come quelli stellari: infatti la degenerazione elettronica conduce ad una massa limite per oggetti completamente degeneri (in particolare per le nane bianche) detta Massa di Chandrasekhar.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interplay of hydrodynamic and electrostatic forces is of great importance for the understanding of colloidal dispersions. Theoretical descriptions are often based on the so called standard electrokinetic model. This Mean Field approach combines the Stokes equation for the hydrodynamic flow field, the Poisson equation for electrostatics and a continuity equation describing the evolution of the ion concentration fields. In the first part of this thesis a new lattice method is presented in order to efficiently solve the set of non-linear equations for a charge-stabilized colloidal dispersion in the presence of an external electric field. Within this framework, the research is mainly focused on the calculation of the electrophoretic mobility. Since this transport coefficient is independent of the electric field only for small driving, the algorithm is based upon a linearization of the governing equations. The zeroth order is the well known Poisson-Boltzmann theory and the first order is a coupled set of linear equations. Furthermore, this set of equations is divided into several subproblems. A specialized solver for each subproblem is developed, and various tests and applications are discussed for every particular method. Finally, all solvers are combined in an iterative procedure and applied to several interesting questions, for example, the effect of the screening mechanism on the electrophoretic mobility or the charge dependence of the field-induced dipole moment and ion clouds surrounding a weakly charged sphere. In the second part a quantitative data analysis method is developed for a new experimental approach, known as "Total Internal Reflection Fluorescence Cross-Correlation Spectroscopy" (TIR-FCCS). The TIR-FCCS setup is an optical method using fluorescent colloidal particles to analyze the flow field close to a solid-fluid interface. The interpretation of the experimental results requires a theoretical model, which is usually the solution of a convection-diffusion equation. Since an analytic solution is not available due to the form of the flow field and the boundary conditions, an alternative numerical approach is presented. It is based on stochastic methods, i. e. a combination of a Brownian Dynamics algorithm and Monte Carlo techniques. Finally, experimental measurements for a hydrophilic surface are analyzed using this new numerical approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lo scopo della tesi è descrivere i buchi neri di Kerr. Dopo aver introdotto tutti gli strumenti matematici necessari quali tensori, vettori di Killing e geodetiche, enunceremo la metrica di Kerr, il teorema no-hair e il frame-dragging. In seguito, a partire dalla metrica di Kerr, calcoleremo e descriveremo le ergosfere, gli orizzonti degli eventi e il moto dei fotoni nel piano equatoriale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Problema di Cauchy, teorema di dipendenza continua dai dati iniziali, teorema di dipendenza regolare dai dati e dai parametri.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nuova frontiera per la procedura di test tailoring è la sintesi di profili vibratori il più reali possibili, nei quali venga tenuto conto della possibile presenza di eventi transitori e della non scontata ripetibilità delle vibrazioni nel tempo. Negli ultimi anni si è rivolto un crescente interesse nel "controllo del Kurtosis", finalizzato alla realizzazione di profili vibratori aventi distribuzione di probabilità non-Gaussiana. Durante l’indagine sperimentale oggetto di questa trattazione si sono portati a rottura per fatica alcuni componenti sottoposti, in generale, a tre differenti tipi di sollecitazione: stazionaria Gaussiana, stazionaria non-Gaussiana e non stazionaria non-Gaussiana. Il componente testato è costituito da un provino cilindrico montato a sbalzo e dotato di una massa concentrata all’estremità libera e di una gola vicina all’incastro, nella quale avviene la rottura per fatica. Durante l’indagine sperimentale si è monitorata la risposta in termini di accelerazione all’estremità libera del provino e di spostamento relativo a monte e a valle della gola, essendo quest’ultimo ritenuto proporzionale alle tensioni che portano a rottura il componente. Per ogni prova sono stati confrontati il Kurtosis e altri parametri statistici dell’eccitazione e della risposta. I risultati ottenuti mostrano che solo le sollecitazioni non stazionarie non-Gaussiane forniscono una risposta con distribuzione di probabilità non-Gaussiana. Per gli altri profili vale invece il Teorema del Limite Centrale. Tale per cui i picchi presenti nell'eccitazione non vengono trasmessi alla risposta. Sono stati inoltre monitorati i tempi di rottura di ogni componente. L’indagine sperimentale è stata effettuata con l'obiettivo di indagare sulle caratteristiche che deve possedere l’eccitazione affinchè sia significativa per le strategie alla base del "controllo del Kurtosis".

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Questo elaborato si propone di dare una panoramica generale delle basi della Dinamica dei Fluidi e della sua importanza nel contesto astrofisico; è strutturato in modo da fornire le nozioni fondamentali necessarie in tali campi e le essenziali informazioni sul formalismo correntemente utilizzato, per poi concludere con l'analisi del fenomeno dell'instabilità di Jeans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Una teoria degli insiemi alternativa alla più nota e diffusa teoria di Zermelo-Fraenkel con l'Assioma di Scelta, ZFC, è quella proposta da W. V. O. Quine nel 1937, poi riveduta e corretta da R. Jensen nel 1969 e rinominata NFU (New foundations with Urelementen). Anche questa teoria è basata sui concetti primitivi di insieme e appartenenza, tuttavia differisce notevolmente da quella usuale perché si ammettono solo formule stratificate, cioè formule in cui è rispettata una gerarchizzazione elemento-insieme che considera priva di significato certe scritture. L'unico inconveniente di NFU è dovuto alle conseguenze della stratificazione. I pregi invece sono notevoli: ad esempio un uso molto naturale delle relazioni come l'inclusione, o la possibilità di considerare insiemi anche collezioni di oggetti troppo "numerose" (come l'insieme universale) senza il rischio di cadere in contraddizione. NFU inoltre risulta essere più potente di ZFC, in quanto, grazie al Teorema di Solovay, è possibile ritrovare in essa un modello con cardinali inaccessibili di ZFC ed è ammessa la costruzione di altri modelli con cardinali inaccessibili della teoria classica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first part of this work deals with the inverse problem solution in the X-ray spectroscopy field. An original strategy to solve the inverse problem by using the maximum entropy principle is illustrated. It is built the code UMESTRAT, to apply the described strategy in a semiautomatic way. The application of UMESTRAT is shown with a computational example. The second part of this work deals with the improvement of the X-ray Boltzmann model, by studying two radiative interactions neglected in the current photon models. Firstly it is studied the characteristic line emission due to Compton ionization. It is developed a strategy that allows the evaluation of this contribution for the shells K, L and M of all elements with Z from 11 to 92. It is evaluated the single shell Compton/photoelectric ratio as a function of the primary photon energy. It is derived the energy values at which the Compton interaction becomes the prevailing process to produce ionization for the considered shells. Finally it is introduced a new kernel for the XRF from Compton ionization. In a second place it is characterized the bremsstrahlung radiative contribution due the secondary electrons. The bremsstrahlung radiation is characterized in terms of space, angle and energy, for all elements whit Z=1-92 in the energy range 1–150 keV by using the Monte Carlo code PENELOPE. It is demonstrated that bremsstrahlung radiative contribution can be well approximated with an isotropic point photon source. It is created a data library comprising the energetic distributions of bremsstrahlung. It is developed a new bremsstrahlung kernel which allows the introduction of this contribution in the modified Boltzmann equation. An example of application to the simulation of a synchrotron experiment is shown.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lo scopo del presente lavoro è di illustrare alcuni temi di geometria simplettica, i cui risultati possono essere applicati con successo al problema dell’integrazione dei sistemi dinamici. Nella prima parte si formalizza il teorema di Noether generalizzato, introducendo il concetto dell’applicazione momento, e si dà una descrizione dettagliata del processo di riduzione simplettica, che consiste nello sfruttare le simmetrie di un sistema fisico, ovvero l’invarianza sotto l’azione di un gruppo dato, al fine di eliminarne i gradi di libertà ridondanti. Nella seconda parte, in quanto risultato notevole reso possibile dalla teoria suesposta, si fornisce una panoramica dei sistemi di tipo Calogero-Moser: sistemi totalmente integrabili che possono essere introdotti e risolti usando la tecnica della riduzione simplettica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In questa tesi viene trattata la trasformata di Fourier per funzioni sommabili, con particolare riguardo per il cosiddetto teorema di inversione, che permette il calcolo di sofisticati integrali reali. Viene inoltre fornito un capitolo di premesse di analisi complessa, utili al calcolo esplicito di trasformate di Fourier.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scopo di questo elaborato è la trattazione del momento di inerzia di un sistema meccanico rispetto ad una retta, con particolare attenzione alla struttura geometrica associata a questa nozione, ovvero all’ellissoide di inerzia. Si parte dalla definizione delle grandezze meccaniche fondamentali, passando per le equazioni cardinali della dinamica, arrivando a dimostrare il teorema di König. Viene poi studiato il momento di inerzia ed evidenziato il suo ruolo importante per la determinazione del momento angolare e dell’energia cinetica: in particolare è emersa la centralità dell’ellissoide d’inerzia. Si conclude con la dimostrazione del teorema di Huyghens e alcuni esempi espliciti di calcolo dell’ellissoide di inerzia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scopo della tesi è presentare alcuni aspetti della teoria spettrale per operatori compatti definiti su spazi di Hilbert separabili. Il primo capitolo è dedicato al Teorema di esistenza di una base numerabile di autovettori, per operatori compatti autoaggiunti. Nel secondo capitolo sono presentate alcune applicazioni dirette al Laplaciano. Viene dimostrato il teorema di immersione di Sobolev, e come conseguenza dell'immersione compatta, si prova che l'inverso del Laplaciano su aperti limitati è un operatore compatto autoaggiunto. Conseguentemente viene determinata la base dei suoi autovettori, che in dimensione uno è la classica serie di Fourier. Nel terzo capitolo vengono determinate le espressioni analitiche delle basi di autovettori sul quadrato e il cerchio unitario.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amphiphile Peptide, Pro-Glu-(Phe-Glu)n-Pro, Pro-Asp-(Phe-Asp)n-Pro, und Phe-Glu-(Phe-Glu)n-Phe, können so aus n alternierenden Sequenzen von hydrophoben und hydrophilen Aminosäuren konstruiert werden, dass sie sich in Monolagen an der Luft-Wasser Grenzfläche anordnen. In biologischen Systemen können Strukturen an der organisch-wässrigen Grenzfläche als Matrix für die Kristallisation von Hydroxyapatit dienen, ein Vorgang der für die Behandlung von Osteoporose verwendet werden kann. In der vorliegenden Arbeit wurden Computersimulationenrneingesetzt, um die Strukturen und die zugrunde liegenden Wechselwirkungen welche die Aggregation der Peptide auf mikroskopischer Ebene steuern, zu untersuchen. Atomistische Molekulardynamik-Simulationen von einzelnen Peptidsträngen zeigen, dass sie sich leicht an der Luft-Wasser Grenzfläche anordnen und die Fähigkeit haben, sich in β-Schleifen zu falten, selbst für relativ kurze Peptidlängen (n = 2). Seltene Ereignisse wie diese (i.e. Konformationsänderungen) erfordern den Einsatz fortgeschrittener Sampling-Techniken. Hier wurde “Replica Exchange” Molekulardynamik verwendet um den Einfluss der Peptidsequenzen zu untersuchen. Die Simulationsergebnisse zeigten, dass Peptide mit kürzeren azidischen Seitenketten (Asp vs. Glu) gestrecktere Konformationen aufwiesen als die mit längeren Seitenketten, die in der Lage waren die Prolin-Termini zu erreichen. Darüber hinaus zeigte sich, dass die Prolin-Termini (Pro vs. Phe) notwendig sind, um eine 2D-Ordnung innerhalb derrnAggregate zu erhalten. Das Peptid Pro-Asp-(Phe-Asp)n-Pro, das beide dieser Eigenschaften enthält, zeigt das geordnetste Verhalten, eine geringe Verdrehung der Hauptkette, und ist in der Lage die gebildeten Aggregate durch Wasserstoffbrücken zwischen den sauren Seitenketten zu stabilisieren. Somit ist dieses Peptid am besten zur Aggregation geeignet. Dies wurde auch durch die Beurteilung der Stabilität von experimentnah-aufgesetzten Peptidaggregaten, sowie der Neigung einzelner Peptide zur Selbstorganisation von anfänglich ungeordneten Konfigurationen unterstützt. Da atomistische Simulationen nur auf kleine Systemgrößen und relativ kurze Zeitskalen begrenzt sind, wird ein vergröbertes Modell entwickelt damit die Selbstorganisation auf einem größeren Maßstab studiert werden kann. Da die Selbstorganisation an der Grenzfläche vonrnInteresse ist, wurden existierenden Vergröberungsmethoden erweitert, um nicht-gebundene Potentiale für inhomogene Systeme zu bestimmen. Die entwickelte Methode ist analog zur iterativen Boltzmann Inversion, bildet aber das Update für das Interaktionspotential basierend auf der radialen Verteilungsfunktion in einer Slab-Geometrie und den Breiten des Slabs und der Grenzfläche. Somit kann ein Kompromiss zwischen der lokalen Flüssigketsstruktur und den thermodynamischen Eigenschaften der Grenzfläche erreicht werden. Die neue Methode wurde für einen Wasser- und einen Methanol-Slab im Vakuum demonstriert, sowie für ein einzelnes Benzolmolekül an der Vakuum-Wasser Grenzfläche, eine Anwendung die von besonderer Bedeutung in der Biologie ist, in der oft das thermodynamische/Grenzflächenpolymerisations-Verhalten zusätzlich der strukturellen Eigenschaften des Systems erhalten werden müssen. Daraufrnbasierend wurde ein vergröbertes Modell über einen Fragment-Ansatz parametrisiert und die Affinität des Peptids zur Vakuum-Wasser Grenzfläche getestet. Obwohl die einzelnen Fragmente sowohl die Struktur als auch die Wahrscheinlichkeitsverteilungen an der Grenzfläche reproduzierten, diffundierte das Peptid als Ganzes von der Grenzfläche weg. Jedoch führte eine Reparametrisierung der nicht-gebundenen Wechselwirkungen für eines der Fragmente der Hauptkette in einem Trimer dazu, dass das Peptid an der Grenzfläche blieb. Dies deutet darauf hin, dass die Kettenkonnektivität eine wichtige Rolle im Verhalten des Petpids an der Grenzfläche spielt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In questo lavoro studiamo le funzioni armoniche e le loro proprietà: le formule di media, il principio del massimo e del minimo (forte e debole), la disuguaglianza di Harnack e il teorema di Louiville. Successivamente scriviamo la prima e la seconda identità di Green, che permettono di ottenere esplicitamente la soluzione fondamentale dell’equazione di Laplace, tramite il calcolo delle soluzioni radiali del Laplaciano. Introduciamo poi la funzione di Green, da cui si ottiene una formula di rappresentazione per le funzioni armoniche. Se il dominio di riferimento è una palla, la funzione di Green può essere determinata esplicitamente, e ciò conduce alla rappresentazione integrale di Poisson per le funzioni armoniche in una palla.