938 resultados para System theory
Resumo:
This dissertation concerns the well-posedness of the Navier-Stokes-Smoluchowski system. The system models a mixture of fluid and particles in the so-called bubbling regime. The compressible Navier-Stokes equations governing the evolution of the fluid are coupled to the Smoluchowski equation for the particle density at a continuum level. First, working on fixed domains, the existence of weak solutions is established using a three-level approximation scheme and based largely on the Lions-Feireisl theory of compressible fluids. The system is then posed over a moving domain. By utilizing a Brinkman-type penalization as well as penalization of the viscosity, the existence of weak solutions of the Navier-Stokes-Smoluchowski system is proved over moving domains. As a corollary the convergence of the Brinkman penalization is proved. Finally, a suitable relative entropy is defined. This relative entropy is used to establish a weak-strong uniqueness result for the Navier-Stokes-Smoluchowski system over moving domains, ensuring that strong solutions are unique in the class of weak solutions.
Resumo:
The concept of equal opportunity for all students is deeply embedded in the Serbian constitution and in education laws. On that level, there is no doubt that everyone is ensured an opportunity to receive quality education. Many measures in education policy have been created specifically to achieve this objective and make the system fair and inclusive. The Coleman Report was linked to a wave of optimism that certain educational measures would help in achieving these noble goals. This aim is a high priority in education in a democratic country, and due to its importance needs to be re-examined. Thus, the present research examines the equity of students in the Serbian education system, detecting areas on all educational levels that could be (or already are) systemic sources of inequity (e.g., criteria for preschool institution enrolment, the system of student awards, rationalisation of the school network, the concept of entrance exams to secondary school or university, etc.). A number of measures have already been taken in the system specifically to deal with inequity (e.g., the Preschool Preparatory Programme, dropout measures, inclusion, scholarships, etc.). The effects of these measures in particular are analysed in the present work. In addition to an analysis of the systemic sources of inequity in the Serbian education system, the article also makes recommendations for their overcoming. (DIPF/Orig.)
Resumo:
Research on the criminological side of system trespassing (i.e. unlawfully gaining access to a computer system) is relatively rare and has yet to examine the effect of the presence of other users on the system during the trespassing event (i.e. the time of communication between a trespasser’s system and the infiltrated system). This thesis seeks to analyze this relationship drawing on principles of Situational Crime Prevention, Routine Activities Theory, and restrictive deterrence. Data were collected from a randomized control trial of target computers deployed on the Internet network of a large U.S. university. This study examined whether the number (one or multiple) and type (administrative or non-administrative) of computer users present on a system reduced the seriousness and frequency of trespassing. Results indicated that the type of user (administrative) produced a restrictive deterrent effect and significantly reduced the frequency and duration of trespassing events.
Resumo:
Over the last decade, a new idea challenging the classical self-non-self viewpoint has become popular amongst immunologists. It is called the Danger Theory. In this conceptual paper, we look at this theory from the perspective of Artificial Immune System practitioners. An overview of the Danger Theory is presented with particular emphasis on analogies in the Artificial Immune Systems world. A number of potential application areas are then used to provide a framing for a critical assessment of the concept, and its relevance for Artificial Immune Systems.
Resumo:
Abstract We present ideas about creating a next generation Intrusion Detection System (IDS) based on the latest immunological theories. The central challenge with computer security is determining the difference between normal and potentially harmful activity. For half a century, developers have protected their systems by coding rules that identify and block specific events. However, the nature of current and future threats in conjunction with ever larger IT systems urgently requires the development of automated and adaptive defensive tools. A promising solution is emerging in the form of Artificial Immune Systems (AIS): The Human Immune System (HIS) can detect and defend against harmful and previously unseen invaders, so can we not build a similar Intrusion Detection System (IDS) for our computers? Presumably, those systems would then have the same beneficial properties as HIS like error tolerance, adaptation and self-monitoring. Current AIS have been successful on test systems, but the algorithms rely on self-nonself discrimination, as stipulated in classical immunology. However, immunologist are increasingly finding fault with traditional self-nonself thinking and a new 'Danger Theory' (DT) is emerging. This new theory suggests that the immune system reacts to threats based on the correlation of various (danger) signals and it provides a method of 'grounding' the immune response, i.e. linking it directly to the attacker. Little is currently understood of the precise nature and correlation of these signals and the theory is a topic of hot debate. It is the aim of this research to investigate this correlation and to translate the DT into the realms of computer security, thereby creating AIS that are no longer limited by self-nonself discrimination. It should be noted that we do not intend to defend this controversial theory per se, although as a deliverable this project will add to the body of knowledge in this area. Rather we are interested in its merits for scaling up AIS applications by overcoming self-nonself discrimination problems.
Resumo:
Over the last decade, a new idea challenging the classical self-non-self viewpoint has become popular amongst immunologists. It is called the Danger Theory. In this conceptual paper, we look at this theory from the perspective of Artificial Immune System practitioners. An overview of the Danger Theory is presented with particular emphasis on analogies in the Artificial Immune Systems world. A number of potential application areas are then used to provide a framing for a critical assessment of the concept, and its relevance for Artificial Immune Systems. Notes: Uwe Aickelin, Department of Computing, University of Bradford, Bradford, BD7 1DP
Resumo:
The aims of this thesis were evaluation the type of wave channel, wave current, and effect of some parameters on them and identification and comparison between types of wave maker in laboratory situations. In this study, designing and making of two dimension channels (flume) and wave maker for experiment son the marine buoy, marine building and energy conversion systems were also investigated. In current research, the physical relation between pump and pumpage and the designing of current making in flume were evaluated. The related calculation for steel building, channels beside glasses and also equations of wave maker plate movement, power of motor and absorb wave(co astal slope) were calculated. In continue of this study, the servo motor was designed and applied for moving of wave maker’s plate. One Ball Screw Leaner was used for having better movement mechanisms of equipment and convert of the around movement to linear movement. The Programmable Logic Controller (PLC) was also used for control of wave maker system. The studies were explained type of ocean energies and energy conversion systems. In another part of this research, the systems of energy resistance in special way of Oscillating Water Column (OWC) were explained and one sample model was designed and applied in hydrolic channel at the Sheikh Bahaii building in Azad University, Science and Research Branch. The dimensions of designed flume was considered at 16 1.98 0. 57 m which had ability to provide regular waves as well as irregular waves with little changing on the control system. The ability of making waves was evaluated in our designed channel and the results were showed that all of the calculation in designed flume was correct. The mean of error between our results and theory calculation was conducted 7%, which was showed the well result in this situation. With evaluating of designed OWC model and considering of changes in the some part of system, one bigger sample of this model can be used for designing the energy conversion system model. The obtained results showed that the best form for chamber in exit position of system, were zero degree (0) in angle for moving below part, forty and five (45) degree in front wall of system and the moving forward of front wall keep in two times of height of wave.
Resumo:
This thesis describes two separate projects. The first is a theoretical and experimental investigation of surface acoustic wave streaming in microfluidics. The second is the development of a novel acoustic glucose sensor. A separate abstract is given for each here. Optimization of acoustic streaming in microfluidic channels by SAWs Surface Acoustic Waves, (SAWs) actuated on flat piezoelectric substrates constitute a convenient and versatile tool for microfluidic manipulation due to the easy and versatile interfacing with microfluidic droplets and channels. The acoustic streaming effect can be exploited to drive fast streaming and pumping of fluids in microchannels and droplets (Shilton et al. 2014; Schmid et al. 2011), as well as size dependant sorting of particles in centrifugal flows and vortices (Franke et al. 2009; Rogers et al. 2010). Although the theory describing acoustic streaming by SAWs is well understood, very little attention has been paid to the optimisation of SAW streaming by the correct selection of frequency. In this thesis a finite element simulation of the fluid streaming in a microfluidic chamber due to a SAW beam was constructed and verified against micro-PIV measurements of the fluid flow in a fabricated device. It was found that there is an optimum frequency that generates the fastest streaming dependent on the height and width of the chamber. It is hoped this will serve as a design tool for those who want to optimally match SAW frequency with a particular microfluidic design. An acoustic glucose sensor Diabetes mellitus is a disease characterised by an inability to properly regulate blood glucose levels. In order to keep glucose levels under control some diabetics require regular injections of insulin. Continuous monitoring of glucose has been demonstrated to improve the management of diabetes (Zick et al. 2007; Heinemann & DeVries 2014), however there is a low patient uptake of continuous glucose monitoring systems due to the invasive nature of the current technology (Ramchandani et al. 2011). In this thesis a novel way of monitoring glucose levels is proposed which would use ultrasonic waves to ‘read’ a subcutaneous glucose sensitive-implant, which is only minimally invasive. The implant is an acoustic analogy of a Bragg stack with a ‘defect’ layer that acts as the sensing layer. A numerical study was performed on how the physical changes in the sensing layer can be deduced by monitoring the reflection amplitude spectrum of ultrasonic waves reflected from the implant. Coupled modes between the skin and the sensing layer were found to be a potential source of error and drift in the measurement. It was found that by increasing the number of layers in the stack that this could be minimized. A laboratory proof of concept system was developed using a glucose sensitive hydrogel as the sensing layer. It was possible to monitor the changing thickness and speed of sound of the hydrogel due to physiological relevant changes in glucose concentration.
Resumo:
215 p.
Resumo:
In recent decades, it has been definitely established the existence of a close relationship between the emotional phenomena and rational processes, but we still do not have a unified definition, or effective models to describe any of them well. To advance our understanding of the mechanisms governing the behavior of living beings we must integrate multiple theories, experiments and models from both fields. In this paper we propose a new theoretical framework that allows integrating and understanding, from a functional point of view, the emotion-cognition duality. Our reasoning, based on evolutionary principles, add to the definition and understanding of emotion, justifying its origin, explaining its mission and dynamics, and linking it to higher cognitive processes, mainly with attention, cognition, decision-making and consciousness. According to our theory, emotions are the mechanism for brain function optimization, besides being the contingency and stimuli prioritization system. As a result of this approach, we have developed a dynamic systems-level model capable of providing plausible explanations for some psychological and behavioral phenomena, and establish a new framework for scientific definition of some fundamental psychological terms.
Resumo:
We present ideas about creating a next generation Intrusion Detection System (IDS) based on the latest immunological theories. The central challenge with computer security is determining the difference between normal and potentially harmful activity. For half a century, developers have protected their systems by coding rules that identify and block specific events. However, the nature of current and future threats in conjunction with ever larger IT systems urgently requires the development of automated and adaptive defensive tools. A promising solution is emerging in the form of Artificial Immune Systems (AIS): The Human Immune System (HIS) can detect and defend against harmful and previously unseen invaders, so can we not build a similar Intrusion Detection System (IDS) for our computers? Presumably, those systems would then have the same beneficial properties as HIS like error tolerance, adaptation and self-monitoring. Current AIS have been successful on test systems, but the algorithms rely on self-nonself discrimination, as stipulated in classical immunology. However, immunologist are increasingly finding fault with traditional self-nonself thinking and a new ‘Danger Theory’ (DT) is emerging. This new theory suggests that the immune system reacts to threats based on the correlation of various (danger) signals and it provides a method of ‘grounding’ the immune response, i.e. linking it directly to the attacker. Little is currently understood of the precise nature and correlation of these signals and the theory is a topic of hot debate. It is the aim of this research to investigate this correlation and to translate the DT into the realms of computer security, thereby creating AIS that are no longer limited by self-nonself discrimination. It should be noted that we do not intend to defend this controversial theory per se, although as a deliverable this project will add to the body of knowledge in this area. Rather we are interested in its merits for scaling up AIS applications by overcoming self-nonself discrimination problems.
Resumo:
257 p.
Resumo:
[eus] Gradu amaierako lan honetan ausazko matrizeen teoriari, RMT-ri, buruzko sarrera orokor bat egiten da ondoren aplikazio fisiko bat emateko. Teoriaren aplikazioa egiteko Kaos kuantikoa deritzon fisikaren arloa erabiliko da. Lehenik eta behin, RMT-ren kontzeptu batzuk azalduko dira helburutzat lehen auzokideen distantziaren distribuzioaren espresio lortzea izanik. Izan ere, distribuzio honek erakutsiko baititu Kaosak kuantikoki uzten dituen aztarnak. Bigarren kapituluan, aplikazio fisikoa azalduko da. Lehenengo Kaosean RMT nola aplikatzen den ikusiko da, ondoren adibide batzuen bidez argituz, eremu magnetiko batean dagoen hidrogeno atomoa eta billar kuantikoak izenarekin ezagutzen diren sistemak, batik bat.