889 resultados para Support Vector Machine


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interactions in mobile devices normally happen in an explicit manner, which means that they are initiated by the users. Yet, users are typically unaware that they also interact implicitly with their devices. For instance, our hand pose changes naturally when we type text messages. Whilst the touchscreen captures finger touches, hand movements during this interaction however are unused. If this implicit hand movement is observed, it can be used as additional information to support or to enhance the users’ text entry experience. This thesis investigates how implicit sensing can be used to improve existing, standard interaction technique qualities. In particular, this thesis looks into enhancing front-of-device interaction through back-of-device and hand movement implicit sensing. We propose the investigation through machine learning techniques. We look into problems on how sensor data via implicit sensing can be used to predict a certain aspect of an interaction. For instance, one of the questions that this thesis attempts to answer is whether hand movement during a touch targeting task correlates with the touch position. This is a complex relationship to understand but can be best explained through machine learning. Using machine learning as a tool, such correlation can be measured, quantified, understood and used to make predictions on future touch position. Furthermore, this thesis also evaluates the predictive power of the sensor data. We show this through a number of studies. In Chapter 5 we show that probabilistic modelling of sensor inputs and recorded touch locations can be used to predict the general area of future touches on touchscreen. In Chapter 7, using SVM classifiers, we show that data from implicit sensing from general mobile interactions is user-specific. This can be used to identify users implicitly. In Chapter 6, we also show that touch interaction errors can be detected from sensor data. In our experiment, we show that there are sufficient distinguishable patterns between normal interaction signals and signals that are strongly correlated with interaction error. In all studies, we show that performance gain can be achieved by combining sensor inputs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clinical and omics data are a promising field of application for machine learning techniques even though these methods are not yet systematically adopted in healthcare institutions. Despite artificial intelligence has proved successful in terms of prediction of pathologies or identification of their causes, the systematic adoption of these techniques still presents challenging issues due to the peculiarities of the analysed data. The aim of this thesis is to apply machine learning algorithms to both clinical and omics data sets in order to predict a patient's state of health and get better insights on the possible causes of the analysed diseases. In doing so, many of the arising issues when working with medical data will be discussed while possible solutions will be proposed to make machine learning provide feasible results and possibly become an effective and reliable support tool for healthcare systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objective of the framework we are proposing is to help the physician obtain information about the patient's condition in order to reach the \emph{correct} diagnosis as soon as possible. In our proposal, the number of interactions between the physician and the patient is reduced to a strict minimum on the one hand and, on the other hand, it is made possible to increase the number of questions to be asked if the uncertainty about the diagnosis persists. These advantages are due to the fact that (i) we implement a reasoning component that allows us to predict a symptom from another symptom without explicitly asking the patient, (ii) we consider non-binary values for the weights associated with the symptoms, we introduce a dataset filtering process in order to choose which partition should be used with respect to some particular characteristics of the patient, and, in addition, (iv) it was added new functionality to the framework: the ability to detect further future risks of a patient already knowing his pathology. The experimental results we obtained are very encouraging

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Three-Dimensional Single-Bin-Size Bin Packing Problem is one of the most studied problem in the Cutting & Packing category. From a strictly mathematical point of view, it consists of packing a finite set of strongly heterogeneous “small” boxes, called items, into a finite set of identical “large” rectangles, called bins, minimizing the unused volume and requiring that the items are packed without overlapping. The great interest is mainly due to the number of real-world applications in which it arises, such as pallet and container loading, cutting objects out of a piece of material and packaging design. Depending on these real-world applications, more objective functions and more practical constraints could be needed. After a brief discussion about the real-world applications of the problem and a exhaustive literature review, the design of a two-stage algorithm to solve the aforementioned problem is presented. The algorithm must be able to provide the spatial coordinates of the placed boxes vertices and also the optimal boxes input sequence, while guaranteeing geometric, stability, fragility constraints and a reduced computational time. Due to NP-hard complexity of this type of combinatorial problems, a fusion of metaheuristic and machine learning techniques is adopted. In particular, a hybrid genetic algorithm coupled with a feedforward neural network is used. In the first stage, a rich dataset is created starting from a set of real input instances provided by an industrial company and the feedforward neural network is trained on it. After its training, given a new input instance, the hybrid genetic algorithm is able to run using the neural network output as input parameter vector, providing as output the optimal solution. The effectiveness of the proposed works is confirmed via several experimental tests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the advent of new technologies it is increasingly easier to find data of different nature from even more accurate sensors that measure the most disparate physical quantities and with different methodologies. The collection of data thus becomes progressively important and takes the form of archiving, cataloging and online and offline consultation of information. Over time, the amount of data collected can become so relevant that it contains information that cannot be easily explored manually or with basic statistical techniques. The use of Big Data therefore becomes the object of more advanced investigation techniques, such as Machine Learning and Deep Learning. In this work some applications in the world of precision zootechnics and heat stress accused by dairy cows are described. Experimental Italian and German stables were involved for the training and testing of the Random Forest algorithm, obtaining a prediction of milk production depending on the microclimatic conditions of the previous days with satisfactory accuracy. Furthermore, in order to identify an objective method for identifying production drops, compared to the Wood model, typically used as an analytical model of the lactation curve, a Robust Statistics technique was used. Its application on some sample lactations and the results obtained allow us to be confident about the use of this method in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Machine (and deep) learning technologies are more and more present in several fields. It is undeniable that many aspects of our society are empowered by such technologies: web searches, content filtering on social networks, recommendations on e-commerce websites, mobile applications, etc., in addition to academic research. Moreover, mobile devices and internet sites, e.g., social networks, support the collection and sharing of information in real time. The pervasive deployment of the aforementioned technological instruments, both hardware and software, has led to the production of huge amounts of data. Such data has become more and more unmanageable, posing challenges to conventional computing platforms, and paving the way to the development and widespread use of the machine and deep learning. Nevertheless, machine learning is not only a technology. Given a task, machine learning is a way of proceeding (a way of thinking), and as such can be approached from different perspectives (points of view). This, in particular, will be the focus of this research. The entire work concentrates on machine learning, starting from different sources of data, e.g., signals and images, applied to different domains, e.g., Sport Science and Social History, and analyzed from different perspectives: from a non-data scientist point of view through tools and platforms; setting a problem stage from scratch; implementing an effective application for classification tasks; improving user interface experience through Data Visualization and eXtended Reality. In essence, not only in a quantitative task, not only in a scientific environment, and not only from a data-scientist perspective, machine (and deep) learning can do the difference.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present work was to produce a cationic solid lipid nanoparticle (SLN) as non-viral vector for protein delivery. Cationic SLN were produced by double emulsion method, composed of softisan(®) 100, cetyltrimethylammonium bromide (CTAB), Tween(®) 80, Span(®) 80, glycerol and lipoid(®) S75 loading insulin as model protein. The formulation was characterized in terms of mean hydrodynamic diameter (z-ave), polydispersity index (PI), zeta potential (ZP), stability during storage time, stability after lyophilization, effect of toxicity and transfection ability in HeLa cells, in vitro release profile and morphology. SLN were stable for 30days and showed minimal changes in their physicochemical properties after lyophilization. The particles exhibited a relatively slow release, spherical morphology and were able to transfect HeLa cells, but toxicity remained an obstacle. Results suggest that SLN are nevertheless promising for delivery of proteins or nucleic acids for gene therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is an analysis of the theoretical and practical construction of the methodology of Matrix Support by means of studies on Paideia Support (Institutional and Matrix Support), which is an inter-professional work of joint care in recent literature and official documents of the Unified Health System (SUS). An attempt was made to describe methodological concepts and strategies. A comparative analysis of Institutional Support and Matrix Support was also conducted using the epistemological framework of Field and Core Knowledge and Practices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work aimed to create a methodology to evaluate the pulverization process with the use of quality tools. It was listed the primary factors, secondary factors, tertiary factors and, with the check list tool support, the list was elaborated. It was evaluated the factors labor, agriculture machine, material and method of 32 pulverization process before pesticide application, in that each factor received a punctuation, having as total sum of 750 points. The medium punctuation to the factors labor, agriculture machine, material and method was 78; 211; 49; 20 and 94 points, respectively. The sum of the factors points for the 32 processes, the minimum value found was 230 and maximum was 620 points. With the proposed methodology, can be identify which common causes of the processes can affect its result.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Universidade Estadual de Campinas . Faculdade de Educação Física

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to assess the Knoop hardness of three high viscous glass ionomer cements: G1 - Ketac Molar; G2 - Ketac Molar Easymix (3M ESPE) and G3 - Magic Glass ART (Vigodent). As a parallel goal, three different methods for insertion of Ketac Molar Easymix were tested: G4 - conventional spatula; G5 - commercial syringe (Centrix) and G6 - low-cost syringe. Ten specimens of each group were prepared and the Knoop hardness was determined 5 times on each specimen with a HM-124 hardness machine (25 g/30 s dwell time) after 24 h, 1 and 2 weeks. During the entire test period, the specimens were stored in liquid paraffin at 37ºC. Significant differences were found between G3 and G1/G2 (two-way ANOVA and Tukey's post hoc test; p<0.01). There was no significant difference in the results among the multiple ways of insertion. The glass ionomer cement Magic Glass ART showed the lowest hardness, while the insertion technique had no significant influence on hardness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phylogenetic relationships among species of the Myzorhynchella Section of Anopheles (Nyssorhynchus) were investigated using the nuclear ribosomal DNA second internal transcribed spacer (ITS2), the nuclear whitegene and mitochondrial cytochrome oxidase subunit I (COI) regions. The recently described Anopheles pristinus and resurrected Anopheles guarani were also included in the study. Bayesian phylogenetic analyses found Anopheles parvus to be the most distantly related species within the Section, a finding that is consistent with morphology. An. pristinus and An. guarani were clearly resolved from Anopheles antunesi and Anopheles lutzii, respectively. An. lutzii collected in the same mountain range as the type locality were found within a strongly supported clade, whereas individuals from the southern state of Rio Grande do Sul, tentatively identified as An. lutzii based on adult female external morphology, were distinct from An. lutzii, An. antunesi and from each other, and may therefore represent two new sympatric species. A more detailed examination of An. lutzii sensu latoalong its known geographic range is recommended to resolve these anomalous relationships.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Every year, autochthonous cases of Plasmodium vivax malaria occur in low-endemicity areas of Vale do Ribeira in the south-eastern part of the Atlantic Forest, state of São Paulo, where Anopheles cruzii and Anopheles bellator are considered the primary vectors. However, other species in the subgenus Nyssorhynchus of Anopheles (e.g., Anopheles marajoara) are abundant and may participate in the dynamics of malarial transmission in that region. The objectives of the present study were to assess the spatial distribution of An. cruzii, An. bellator and An. marajoara and to associate the presence of these species with malaria cases in the municipalities of the Vale do Ribeira. Potential habitat suitability modelling was applied to determine both the spatial distribution of An. cruzii, An. bellator and An. marajoara and to establish the density of each species. Poisson regression was utilized to associate malaria cases with estimated vector densities. As a result, An. cruzii was correlated with the forested slopes of the Serra do Mar, An. bellator with the coastal plain and An. marajoara with the deforested areas. Moreover, both An. marajoara and An. cruzii were positively associated with malaria cases. Considering that An. marajoara was demonstrated to be a primary vector of human Plasmodium in the rural areas of the state of Amapá, more attention should be given to the species in the deforested areas of the Atlantic Forest, where it might be a secondary vector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work proposes a new approach using a committee machine of artificial neural networks to classify masses found in mammograms as benign or malignant. Three shape factors, three edge-sharpness measures, and 14 texture measures are used for the classification of 20 regions of interest (ROIs) related to malignant tumors and 37 ROIs related to benign masses. A group of multilayer perceptrons (MLPs) is employed as a committee machine of neural network classifiers. The classification results are reached by combining the responses of the individual classifiers. Experiments involving changes in the learning algorithm of the committee machine are conducted. The classification accuracy is evaluated using the area A. under the receiver operating characteristics (ROC) curve. The A, result for the committee machine is compared with the A, results obtained using MLPs and single-layer perceptrons (SLPs), as well as a linear discriminant analysis (LDA) classifier Tests are carried out using the student's t-distribution. The committee machine classifier outperforms the MLP SLP, and LDA classifiers in the following cases: with the shape measure of spiculation index, the A, values of the four methods are, in order 0.93, 0.84, 0.75, and 0.76; and with the edge-sharpness measure of acutance, the values are 0.79, 0.70, 0.69, and 0.74. Although the features with which improvement is obtained with the committee machines are not the same as those that provided the maximal value of A(z) (A(z) = 0.99 with some shape features, with or without the committee machine), they correspond to features that are not critically dependent on the accuracy of the boundaries of the masses, which is an important result. (c) 2008 SPIE and IS&T.