956 resultados para Solid Tumors
Resumo:
Solid material thrown away as unused from various sectors such as agricultural, commercial, domestic, industrial and institutional constitutes solid wastes. This places an enormous strain on natural resources and seriously undermines efficient and sustainable development. Management of Municipal Solid Waste discusses the ways to salvage the situation through efficient management of solid wastes from waste generation to final disposal. The various processes such as waste generation, collection, storage, processing, recovery, transport, and disposal, are explained with the support of case studies. The book discusses reduction of waste at the source and to foster implementation of integrated solid waste management systems that are cost-effective and protect human health and the environment.
Resumo:
Noble metal ions like Pt(IV) and Pd(II) were impregnated on gamma-alumina and aerosol 300 silica surfaces. Reduction of these ions using ammonia borane in the solid state resulted in the formation of the respective metal nanoparticles embedded in BNHx polymer which is dispersed on the oxide support. Removal of the BNH polymer was accomplished by washing the samples repeatedly with methanol. In this process the polymer undergoes solvolysis to release H-2 accompanied by the formation of ammonium methoxy borate salt, which has been removed by repeated methanol washings. As a result, metal nanoparticles well dispersed on gamma-alumina and aerosol 300 silica were obtained. These samples have been characterized by a combination of techniques, including electron microscopy, powder X-ray diffraction, NMR spectroscopy and surface area analyser.
Resumo:
Selectivity of the particular solvent to separate a mixture is essential for the optimal design of a separation process. Supercritical carbon dioxide (SCCO2) is widely used as a solvent in the extraction, purification and separation of specialty chemicals. The effect of the temperature and pressure on selectivity is complicated and varies from system to system. The effect of temperature and pressure on selectivity of SCCO2 for different solid mixtures available in literature was analyzed. In this work, we have developed two model equations to correlate the selectivity in terms of temperature and pressure. The model equations have correlated the selectivity of SCCO2 satisfactorily for 18 solid mixtures with an average absolute relative deviation (AARD) of around 5%. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In this Letter, we examine magnetization in double- and zero-quantum reservoirs of an ensemble of spin-1/2 nuclei and describe their role in determining the sensitivity of a class of separated local field NMR experiments based on Hartmann-Hahn cross-polarization. We observe that for the liquid crystal system studied, a large dilute spin-polarization, obtained initially by the use of adiabatic cross-polarization, can enhance the sensitivity of the above experiment. The signal enhancement factors, however, are found to vary and depend on the local dynamics. The experimental results have been utilized to obtain the local order-parameters of the system. (C) 2012 Elsevier B. V. All rights reserved.
Resumo:
The solubilities of various solid pollutants in supercritical carbon dioxide were investigated. The intermolecular interactions play a significant role in determining the solubilities of solids in supercritical carbon dioxide. A new model equation was derived by using the concepts of association and activity coefficient model to correlate the solubilities of solids. The model equation combines the association and Wilson activity coefficient models and includes the interaction potentials between the molecules, which are useful in understanding the behavior of the solid solutes in SCCO2. The new model equation involves five adjustable parameters to correlate the solubilities of solids by incorporating the interactions between the molecules. The equation correlated 75 solid systems with an average AARD of around 9%, which was better than the correlations obtained from standard models such as Mendez Santiago-Teja (MT) model and association model. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A study has been conducted on a Cu(Sn) solid solution to examine the role of the vacancy wind effect on interdiffusion. First, the interdiffusion and the intrinsic diffusion coefficients are calculated. The trend of the interdiffusion coefficients is explained with the help of the driving force. Following this, the tracer diffusion coefficients of the species are calculated with and without consideration of the vacancy wind effect. We found that the role of the vacancy wind is negligible on the minor element in a dilute solid solution, which is the faster diffusing species in this system and controls the interdiffusion process. However, consideration of this effect is important to understand the diffusion rate of the major element, which is the slower diffusing species in this system.
Resumo:
Nano sized copper chromite, which is used as a burn rate accelerator for solid propellants, was synthesized by the solution combustion process using citric acid and glycine as fuel. Pure spinel phase copper chromite (CuCr2O4) was synthesized, and the effect of different ratios of Cu-Cr ions in the initial reactant and various calcination temperatures on the final properties of the material were examined. The reaction time for the synthesis with glycine was lower compared to that with citric acid. The synthesized samples from both fuel cycles were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), BET surface area analysis, and scanning electron microscope (SEM). Commercial copper chromite that is currently used in solid propellant formulation was also characterized by the same techniques. XRD analysis shows that the pure spinel phase compound is formed by calcination at 700 degrees C for glycine fuel cycle and between 750 and 800 degrees C for citric acid cycle. XPS results indicate the variation of the oxidation state of copper in the final compound with a change in the Cu-Cr mole ratio. SEM images confirm the formation of nano size spherical shape particles. The variation of BET surface area with calcination temperature was studied for the solution combusted catalyst. Burn rate evaluation of synthesized catalyst was carried out and compared with the commercial catalyst. The comparison between BET surface area and the burn rate depicts that surface area difference caused the variation in burn rate between samples. The reason behind the reduction in surface area and the required modifications in the process are also described.
Resumo:
A steady state kinetic model has been developed for the vapor-liquid-solid growth of Si whiskers or nanowires from liquid catalyst droplets. The steady state is defined as one in which the net injection rate of Si into the droplet is equal to the ejection rate due to wire growth. Expressions that represent specific mechanisms of injection and ejection of Si atoms from the liquid catalyst droplet have been used and their relative importance has been discussed. The analysis shows that evaporation and reverse reaction rates need to be invoked, apart from just surface cracking of the precursor, in order to make the growth rate radius dependent. When these pathways can be neglected, the growth rate become radius independent and can be used to determine the activation energies for the rate limiting step of heterogeneous precursor decomposition. The ejection rates depend on the mechanism of wire growth at the liquid-solid interface or the liquid-solid-vapor triple phase boundary. It is shown that when wire growth is by nucleation and motion of ledges, a radius dependence of growth rate does not just come from the Gibbs-Thompson effect on supersaturation in the liquid, but also from the dependence of the actual area or length available for nucleation. Growth rates have been calculated using the framework of equations developed and compared with experimental results. The agreement in trends is found to be excellent. The same framework of equations has also been used to account for the diverse pressure and temperature dependence of growth rates reported in the literature. © 2012 American Institute of Physics.
Resumo:
New C-13-detected NMR experiments have been devised for molecules in solution and solid state, which provide chemical shift correlations of methyl groups with high resolution, selectivity and sensitivity. The experiments achieve selective methyl detection by exploiting the one bond J-coupling between the C-13-methyl nucleus and its directly attached C-13 spin in a molecule. In proteins such correlations edit the C-13-resonances of different methyl containing residues into distinct spectral regions yielding a high resolution spectrum. This has a range of applications as exemplified for different systems such as large proteins, intrinsically disordered polypeptides and proteins with a paramagnetic centre.
Resumo:
A new solid state synthetic route has been developed toward metal and bimetallic alloy nanoparticles from metal salts employing amine-boranes, as the reducing agent. During the reduction, amine-borane plays a dual role: acts as a reducing agent and reduces the metal salts to their elemental form and simultaneously generates a stabilizing agent in situ which controls the growth of the particles and stabilizes them in the nanosize regime. Employing different amine-boranes with differing reducing ability (ammonia borane (AB), dimethylamine borane (DMAB), and triethylamine borane (TMAB)) was found to have a profound effect on the particle size and the size distribution. Usage of AB as the reducing agent provided the smallest possible size with best size distribution. Employment of TMAB also afforded similar results; however, when DMAB was used as the reducing agent it resulted in larger sized nanoparticles that are polydisperse too. In the AB mediated reduction, BNHx polymer generated in situ acts as a capping agent whereas, the complexing amine of the other amine-boranes (DMAB and TMAB) play the same role. Employing the solid state route described herein, monometallic Au, Ag, Cu, Pd, and Ir and bimetallic CuAg and CuAu alloy nanoparticles of <10 nm were successfully prepared. Nucleation and growth processes that control the size and the size distribution of the resulting nanoparticles have been elucidated in these systems.
Resumo:
Present trend of semi-solid processing is directed towards rheocasting route which allows manufacturing of near-net-shape cast components directly from the prepared semi-solid slurry. Generation of globular equi-axed grains during solidification of rheocast components, compared to the columnar dendritic structure of conventional casting routes, facilitates the manufacturing of components with improved mechanical properties and structural integrity. In the present investigation, a cooling slope has been designed and indigenously fabricated to produce semi solid slurry of Al-Si-Mg (A356) alloy and successively cast in a metallic mould. The scope of the present work discusses about development of a numerical model to simulate the liquid metal flow through cooling slope using Eulerian two-phase flow approach and to investigate the effect of pouring temperature on cooling slope semi-solid slurry generation process. The two phases considered in the present model are liquid metal and air. Solid fraction evolution of the solidifying melt is tracked at different locations of the cooling slope, following Schiel's equation. The continuity equation, momentum equation and energy equation are solved considering thin wall boundary condition approach. During solidification of the liquid metal, a modified temperature recovery scheme has been employed taking care of the latent heat release and change of fraction of liquid. The results obtained from simulations are compared with experimental findings and good agreement has been found.
Resumo:
Solid-state polymer electrolytes possess high conductivity and have advantages compared with their liquid counterparts. The polyethylene oxide (PEO)-based polymer is a good candidate for this purpose. The PEO/SnCl2/polyaniline composite (PSP composites) at different weight percentages were prepared in anhydrous acetonitrile media. Structural studies were carried out of the prepared composites by X-ray diffraction, Fourier transmission infrared spectroscopy, and surface morphology by scanning electron microscopy. The sigma (dc) was carried out by a two-probe method, and it is found that the conductivity increases with an increase in temperature. The temperature-dependent conductivity of the composites exhibits a typical semi-conducting behavior and hence can be explained by the 1D variable range hopping model proposed by Mott. The electrochemical cell parameters for battery applications at room temperature have also been determined. The samples are fabricated for battery application in the configuration of Na: (PSP): (I-2 + C + sample), and their experimental data are measured using Wagner's polarization technique. The cell parameters result in an open-circuit voltage of 0.83 V and a short-circuit current of 912 mu A for PSP (70:30:10) composite. Hence, these composites can be used in polymer electrolyte studies.
Resumo:
Sequential transformation in a family of metal-organic framework compounds has been investigated employing both a solid-state as well as a solution mediated route. The compounds, cobalt oxy-bis(benzoate) and manganese oxybis(benzoate) having a two-dimensional structure, were reacted with bipyridine forming cobalt oxy-bis(benzoate)-4,4'-bipyridine and manganese oxy-bis(benzoate)-4,4'-bipyridine, respectively. The bipyridine containing compounds appear to form sequentially through stable intermediates. For the cobalt system, the transformation from a two-dimensional compound, Co(H2O)(2)(OBA)] (OBA = 4,4'-oxy-bis(benzoate)), I, to two different three-dimensional compounds, Co(bpy)(OBA)]center dot bpy, II, (bpy = 4,4'-bipyridine) and Co(bpy)(0.5)(OBA)], III, and reversibility between II and III have been investigated. In the manganese system, transformation from a two-dimensional compound, Mn(H2O)(2)(OBA)], Ia, to two different three-dimensional compounds, Mn (bpy)(OBA)]center dot bpy, Ha and Ha to Mn(bpy)(0.5)(OBA)], Ilia, has been investigated. It has also been possible to identify intermediate products during these transformation reactions. The possible pathways for the formation of the compounds were postulated.
Resumo:
PbZr1-xTixO3 ceramics synthesised by low temperature calcination followed by sintering at 1280 degrees C show a Morphotropic Phase Boundary (MPB) for compositions of x=0.44-0.51. The morphotropic phase boundary is wider for samples with smaller grain sizes due to the synthesis route. A Rietveld analysis is performed on a composition of x=0.5 composition to quantify the phase fractions of the tetragonal and monoclinic phases present in the PZT system. Temperature dependent X-ray diffraction and dielectric studies of PbZr0.5Ti0.5O3 composition demonstrated a phase transformation from monoclinic to tetragonal at 270 degrees C followed by a ferroelectric tetragonal to a paraelectric cubic transition at 370 degrees C. Thus, the poling of these ceramics should be performed below 270 degrees C to benefit from the presence of a monoclinic phase. (C) 2012 Elsevier Ltd and Techna Group S.r.l. All rights reserved.