904 resultados para Sociedad Industrial Americana Maquinarins Di Tella Limitada
Resumo:
Finnish forest industry is in the middle of a radical change. Deepening recession and the falling demand of woodworking industry´s traditional products have forced also sawmilling industry to find new and more fertile solutions to improve their operational preconditions. In recent years, the role of bioenergy production has often been highlighted as a part of sawmills´ business repertoire. Sawmilling produces naturally a lot of by-products (e.g. bark, sawdust, chips) which could be exploited more effectively in energy production, and this would bring more incomes or maybe even create new business opportunities for sawmills. Production of bioenergy is also supported by government´s climate and energy policies favouring renewable energy sources, public financial subsidies, and soaring prices of fossil fuels. Also the decreasing production of domestic pulp and paper industry releases a fair amount of sawmills´ by-products for other uses. However, bioenergy production as a part of sawmills´ by-product utilization has been so far researched very little from a managerial point of view. The purpose of this study was to explore the relative significance of the main bioenergy-related processes, resources and factors at Finnish independent industrial sawmills including partnerships, cooperation, customers relationships and investments, and also the future perspectives of bioenergy business at these sawmills with the help of two resource-based approaches (resource-based view, natural-resource-based view). Data of the study comprised of secondary data (e.g. literature), and primary data which was attracted from interviews directed to sawmill managers (or equivalent persons in charge of decisions regarding bioenergy production at sawmill). While a literature review and the Delphi method with two questionnaires were utilized as the methods of the study. According to the results of the study, the most significant processes related to the value chain of bioenergy business are connected to raw material availability and procurement, and customer relationships management. In addition to raw material and services, the most significant resources included factory and machinery, personnel, collaboration, and geographic location. Long-term cooperation deals were clearly valued as the most significant form of collaboration, and especially in processes connected to raw material procurement. Study results also revealed that factors related to demand, subsidies and prices had highest importance in connection with sawmills´ future bioenergy business. However, majority of the respondents required that certain preconditions connected to the above-mentioned factors should be fulfilled before they will continue their bioenergy-related investments. Generally, the answers showed a wide divergence of opinions among the respondents which may refer to sawmills´ different emphases and expectations concerning bioenergy. In other words, bioenergy is still perceived as a quite novel and risky area of business at Finnish independent industrial sawmills. These results indicate that the massive expansion of bioenergy business at private sawmills in Finland is not a self-evident truth. The blocking barriers seem to be connected mainly to demand of bioenergy and money. Respondents´ answers disseminated a growing dissatisfaction towards the policies of authorities, which don´t treat equally sawmill-based bioenergy compared to other forms of bioenergy. This proposition was boiled down in a sawmill manager´s comment: “There is a lot of bioenergy available, if they just want to make use of it.” It seems that the positive effects of government´s policies favouring the renewables are not taking effect at private sawmills. However, as there anyway seems to be a lot of potential connected to emerging bioenergy business at Finnish independent industrial sawmills, there is also a clear need for more profound future studies over this topic.
Resumo:
The development of microstructure in 316L stainless steel during industrial hot forming operations including press forging (strain rate of 0 . 15 s(-1)), rolling/extrusion (strain rate of 2-8 . 8 s(-1)), and hammer forging (strain rate of 100 s(-1)) at different temperatures in the range 600-1200 degrees C was studied with a view to validating the predictions of the processing map. The results showed that good col relation existed between the regimes indicated in the map and the product microstructures. The 316L stainless steel exhibited unstable flow in the form of flow localisation when hammer forged at temperatures above 900 degrees C, rolled below 1000 degrees C, or press forged below 900 degrees C. All these conditions must therefore be avoided in mechanical processing of the material. Conversely, in order to obtain defect free microstructures, ideally the material should be rolled at temperatures above 1100 degrees C, press forged at temperatures above 1000 degrees C, or hammer forged in the temperature range 600-900 degrees C. (C) 1996 The Institute of Materials.
Resumo:
The reactions of the mononuclear cyclodiphosphazane complexes, cis-[Mo(CO)(4){cis-[PhNP(OR)](2)}(2)] with [Mo(CO)(4)(nbd)] (nbd = norbornadiene). [Mo(CO)(4)(NHC5H10)(2)] or [MCl(2)(cod)] (cod = cycloocta-1,5-diene) afforded the homobimetallic complexes; [Mo-2(CO)(8){mu-cis-[PhNP(OR)](2)}(2)] (R = C(5)H(4)Me-p 5 or CH2CF3 6) or the heterobimetallic complexes. [Mo-2(CO)(8){mu-cis-[PhNP(OE)](2)}(2)MCl(2)] (R = C(6)H(4)Me-p; M = Pd 7 or Pt 8). In all the above complexes, the two metal moieties are bridged by two cyclodiphosphazane ligands. The reactions of the mononuclear complexes, cis-[M(CO)(4)(A){cis-[PhNP(OC(6)H(4)Me-p)](2)}] with (M'Cl-2(cod)] afforded the trinuclear complexes, cis-[M'Cl-2[M(CO)(4)(A){cis-[PhNP(OC(6)H(4)Me-p)](2)}](2)] (M' = Pd, M = Mo, A = P(OMe)(3) 10; M' = Pt, M = Mo. A = P(OMe)(3) 11; M' = Pd. M = W. A = NHC5H10 12; M' = Pt, M = W. A = NHC5H10 13). The structure of the complex 5 has been determined by single-crystal X-ray crystallography.
Resumo:
The structure of N-3-benzoyl-2',3'-di-O-benzoyluridine, C30H24N2O9, has two molecules in the asymmetric unit. The uracil bases of both the molecules are in the anti conformation with respect to the ribose moiety and the furanosyl rings adopt a C3'-endo conformation. The orientation about the C4'-C5' bond is gauche-gauche. The two crystallographically independent molecules are linked through several C-H ... O hydrogen bonds. The nucleoside molecules pack as columns along the a axis and these columns repeat along the c axis.
Resumo:
The prime focus of this study is to design a 50 mm internal diameter diaphragmless shock tube that can be used in an industrial facility for repeated loading of shock waves. The instantaneous rise in pressure and temperature of a medium can be used in a variety of industrial applications. We designed, fabricated and tested three different shock wave generators of which one system employs a highly elastic rubber membrane and the other systems use a fast acting pneumatic valve instead of conventional metal diaphragms. The valve opening speed is obtained with the help of a high speed camera. For shock generation systems with a pneumatic cylinder, it ranges from 0.325 to 1.15 m/s while it is around 8.3 m/s for the rubber membrane. Experiments are conducted using the three diaphragmless systems and the results obtained are analyzed carefully to obtain a relation between the opening speed of the valve and the amount of gas that is actually utilized in the generation of the shock wave for each system. The rubber membrane is not suitable for industrial applications because it needs to be replaced regularly and cannot withstand high driver pressures. The maximum shock Mach number obtained using the new diaphragmless system that uses the pneumatic valve is 2.125 +/- 0.2%. This system shows much promise for automation in an industrial environment.
Resumo:
A mathematical model has been developed for the gas carburising (diffusion) process using finite volume method. The computer simulation has been carried out for an industrial gas carburising process. The model's predictions are in good agreement with industrial experimental data and with data collected from the literature. A study of various mass transfer and diffusion coefficients has been carried out in order to suggest which correlations should be used for the gas carburising process. The model has been interfaced in a Windows environment using a graphical user interface. In this way, the model is extremely user friendly. The sensitivity analysis of various parameters such as initial carbon concentration in the specimen, carbon potential of the atmosphere, temperature of the process, etc. has been carried out using the model.
Resumo:
Nucleoside diphosphate kinases (NDK) are characterized by high catalytic turnover rates and diverse substrate specificity. These features make this enzyme an effective activator of a pro-drug an application that has been actively pursued for a variety of therapeutic strategies. The catalytic mechanism of this enzyme is governed by a conserved histidine that coordinates a magnesium ion at the active site. Despite substantial structural and biochemical information on NDK, the mechanistic feature of the phospho-transfer that leads to auto-phosphorylation remains unclear. While the role of the histidine residue is well documented, the other active site residues, in particular the conserved serine remains poorly characterized. Studies on some homologues suggest no role for the serine residue at the active site, while others suggest a crucial role for this serine in the regulation and quaternary association of this enzyme in some species. Here we report the biochemical features of the Staphylococcus aureus NDK and the mutant enzymes. We also describe the crystal structures of the apo-NDK, as a transition state mimic with vanadate and in complex with different nucleotide substrates. These structures formed the basis for molecular dynamics simulations to understand the broad substrate specificity of this enzyme and the role of active site residues in the phospho-transfer mechanism and oligomerization. Put together, these data suggest that concerted changes in the conformation of specific residues facilitate the stabilization of nucleotide complexes thereby enabling the steps involved in the ping-pong reaction mechanism without large changes to the overall structure of this enzyme. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
New complexes of lanthanide perchlorates with di-t-butyl amides of di, tri and tetraglycolic acids have been synthesised. The complexes have the general formula Ln(DiGA)3(ClO4)3; Ln(TriGA)2 (ClO4)3 and Ln(TetGA)2 (C1O4)3, where Ln = La-Yb and Y and DiGA = N,N′, di-t-butyl diglycolamide, TriGA N,N′, di-t-butyl triglycolamide and TetGA = N,N′ di-t-butyl tetraglycolamide, respectively. The complexes have been characterized by analysis, electrolytic conductance, infrared,1H and13C nuclear magnetic resonance and electronic spectral data.Infrared spectra indicate the coordination of all the available ether oxygens and the amide carbonyls in each of the ligands, to the metal ions. IR and conductance data show that the perchlorate groups in all the complexes are ionic.1H and13C NMR data support the IR data regarding the mode of coordination of ligands to the metal ions. Electronic spectral shapes have been interpreted in terms of nine, eight and ten coordination in DiGA, TriGA and TetGA complexes respectively.
Resumo:
Poly(acrylic acid-co-sodium acrylate-co-acrylamide) superabsorbent polymers (SAPs) cross-linked with ethylene glycol dimethacrylate (EGDMA) were synthesized by inverse suspension polymerization. The SAPs were swollen in DI water, and it was found that the equilibrium swelling capacities varied with the acrylamide content. The SAPs were subjected to reversible swelling/deswelling cycles in DI water and aqueous NaCl solution, respectively. The effect of the addition of an electrolyte on the swelling of the SAP was explored. The equilibrium swelling capacity of the SAPs was found to decrease with increasing concentration of added electrolyte in the swelling medium. The effect of the particle size of the dry SAPs on the swelling properties was also investigated. A first order model was used to describe the kinetics of swelling/deswelling, and the equilibrium swelling capacity, limiting swelling capacity, and swelling/deswelling rate coefficients were determined.
Resumo:
Industrial situations afflicted by corrosion induced by microorganisms are illustrated with examples. The types and characteristics of microorganisms involved in biocorrosion processes are discussed. Possible mechanisms in biocorrosion as occurring under sub-soil, sea water and fresh water conditions are analyzed. Methods to combat biocorrosion are also outlined.
Resumo:
This study presents 100% degradation of H-acid under optimized conditions using Alcaligenes latus, isolated from textile industrial effluent. Gene/s responsible for H-acid degradation was/were found to be present on plasmid DNA. Addition of bipyridyl to incubated medium resulted in accumulation of terminal aromatic compound, suggesting that catechol may be terminal aromatic compound in degradation pathway of H-acid by A. latus. SDS-PAGE of cell free extracts showed two prominent bands close to molecular weight of catechol 1,2-dioxygenase.