897 resultados para Simulation-based methods


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A simulation-based modelling approach is used to examine the effects of stratified seed dispersal (representing the distribution of the majority of dispersal around the maternal parent and also rare long-distance dispersal) on the genetic structure of maternally inherited genomes and the colonization rate of expanding plant populations. The model is parameterized to approximate postglacial oak colonization in the UK, but is relevant to plant populations that exhibit stratified seed dispersal. The modelling approach considers the colonization of individual plants over a large area (three 500 km x 10 km rolled transects are used to approximate a 500 km x 300 km area). Our approach shows how the interaction of plant population dynamics with stratified dispersal can result in a spatially patchy haplotype structure. We show that while both colonization speeds and the resulting genetic structure are influenced by the characteristics of the dispersal kernel, they are robust to changes in the periodicity of long-distance events, provided the average number of long-distance dispersal events remains constant. We also consider the effects of additional physical and environmental mechanisms on plant colonization. Results show significant changes in genetic structure when the initial colonization of different haplotypes is staggered over time and when a barrier to colonization is introduced. Environmental influences on survivorship and fecundity affect both the genetic structure and the speed of colonization. The importance of these mechanisms in relation to the postglacial spread and genetic structure of oak in the UK is discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A method is presented for calculating the winding patterns required to design independent zonal and tesseral biplanar shim coils for magnetic resonance imaging. Streamline, target-field, Fourier integral and Fourier series methods are utilized. For both Fourier-based methods, the desired target field is specified on the surface of the conducting plates. For the Fourier series method it is possible to specify the target field at additional depths interior to the two conducting plates. The conducting plates are confined symmetrically in the xy plane with dimensions 2a x 2b, and are separated by 2d in the z direction. The specification of the target field is symmetric for the Fourier integral method, but can be over some asymmetric portion pa < x < qa and sb < y < tb of the coil dimensions (-1 < p < q < 1 and -1 < s < t < 1) for the Fourier series method. Arbitrary functions are used in the outer sections to ensure continuity of the magnetic field across the entire coil face. For the Fourier series case, the entire field is periodically extended as double half-range sine or cosine series. The resultant Fourier coefficients are substituted into the Fourier series and integral expressions for the internal and external magnetic fields, and stream functions on both the conducting surfaces. A contour plot of the stream function directly gives the required coil winding patterns. Spherical harmonic analysis of field calculations from a ZX shim coil indicates that example designs and theory are well matched.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Substantial amounts of nitrogen (N) fertiliser are necessary for commercial sugarcane production because of the large biomass produced by sugarcane crops. Since this fertiliser is a substantial input cost and has implications if N is lost to the environment, there are pressing needs to optimise the supply of N to the crops' requirements. The complexity of the N cycle and the strong influence of climate, through its moderation of N transformation processes in the soil and its impact on N uptake by crops, make simulation-based approaches to this N management problem attractive. In this paper we describe the processes to be captured in modelling soil and plant N dynamics in sugarcane systems, and review the capability for modelling these processes. We then illustrate insights gained into improved management of N through simulation-based studies for the issues of crop residue management, irrigation management and greenhouse gas emissions. We conclude by identifying processes not currently represented in the models used for simulating N cycling in sugarcane production systems, and illustrate ways in which these can be partially overcome in the short term. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Poly-beta-hydroxyalkanoate (PHA) is a polymer commonly used in carbon and energy storage for many different bacterial cells. Polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs), store PHA anaerobically through metabolism of carbon substrates such as acetate and propionate. Although poly-beta-hydroxybutyrate (PHB)and poly-beta-hydroxyvalerate (PHV) are commonly quantified using a previously developed gas chromatography (GC) method, poly-beta-hydroxy-2-methyl valerate (PH2MV) is seldom quantified despite the fact that it has been shown to be a key PHA fraction produced when PAOs or GAOs metabolise propionate. This paper presents two GC-based methods modified for extraction and quantification of PHB, PHV and PH2MV from enhanced biological phosphorus removal (EBPR) systems. For the extraction Of PHB and PHV from acetate fed PAO and GAO cultures, a 3% sulfuric acid concentration and a 2-20 h digestion time is recommended, while a 10% sulfuric acid solution digested for 20 h is recommended for PHV and PH2MV analysis from propionate fed EBPR systems. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The recent deregulation in electricity markets worldwide has heightened the importance of risk management in energy markets. Assessing Value-at-Risk (VaR) in electricity markets is arguably more difficult than in traditional financial markets because the distinctive features of the former result in a highly unusual distribution of returns-electricity returns are highly volatile, display seasonalities in both their mean and volatility, exhibit leverage effects and clustering in volatility, and feature extreme levels of skewness and kurtosis. With electricity applications in mind, this paper proposes a model that accommodates autoregression and weekly seasonals in both the conditional mean and conditional volatility of returns, as well as leverage effects via an EGARCH specification. In addition, extreme value theory (EVT) is adopted to explicitly model the tails of the return distribution. Compared to a number of other parametric models and simple historical simulation based approaches, the proposed EVT-based model performs well in forecasting out-of-sample VaR. In addition, statistical tests show that the proposed model provides appropriate interval coverage in both unconditional and, more importantly, conditional contexts. Overall, the results are encouraging in suggesting that the proposed EVT-based model is a useful technique in forecasting VaR in electricity markets. (c) 2005 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: The residue-wise contact order (RWCO) describes the sequence separations between the residues of interest and its contacting residues in a protein sequence. It is a new kind of one-dimensional protein structure that represents the extent of long-range contacts and is considered as a generalization of contact order. Together with secondary structure, accessible surface area, the B factor, and contact number, RWCO provides comprehensive and indispensable important information to reconstructing the protein three-dimensional structure from a set of one-dimensional structural properties. Accurately predicting RWCO values could have many important applications in protein three-dimensional structure prediction and protein folding rate prediction, and give deep insights into protein sequence-structure relationships. Results: We developed a novel approach to predict residue-wise contact order values in proteins based on support vector regression (SVR), starting from primary amino acid sequences. We explored seven different sequence encoding schemes to examine their effects on the prediction performance, including local sequence in the form of PSI-BLAST profiles, local sequence plus amino acid composition, local sequence plus molecular weight, local sequence plus secondary structure predicted by PSIPRED, local sequence plus molecular weight and amino acid composition, local sequence plus molecular weight and predicted secondary structure, and local sequence plus molecular weight, amino acid composition and predicted secondary structure. When using local sequences with multiple sequence alignments in the form of PSI-BLAST profiles, we could predict the RWCO distribution with a Pearson correlation coefficient (CC) between the predicted and observed RWCO values of 0.55, and root mean square error (RMSE) of 0.82, based on a well-defined dataset with 680 protein sequences. Moreover, by incorporating global features such as molecular weight and amino acid composition we could further improve the prediction performance with the CC to 0.57 and an RMSE of 0.79. In addition, combining the predicted secondary structure by PSIPRED was found to significantly improve the prediction performance and could yield the best prediction accuracy with a CC of 0.60 and RMSE of 0.78, which provided at least comparable performance compared with the other existing methods. Conclusion: The SVR method shows a prediction performance competitive with or at least comparable to the previously developed linear regression-based methods for predicting RWCO values. In contrast to support vector classification (SVC), SVR is very good at estimating the raw value profiles of the samples. The successful application of the SVR approach in this study reinforces the fact that support vector regression is a powerful tool in extracting the protein sequence-structure relationship and in estimating the protein structural profiles from amino acid sequences.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this study was to identify a set of genetic polymorphisms that efficiently divides methicillin-resistant Staphylococcus aureus (MRSA) strains into groups consistent with the population structure. The rationale was that such polymorphisms could underpin rapid real-time PCR or low-density array-based methods for monitoring MRSA dissemination in a cost-effective manner. Previously, the authors devised a computerized method for identifying sets of single nucleoticle polymorphisms (SNPs) with high resolving power that are defined by multilocus sequence typing (MLST) databases, and also developed a real-time PCR method for interrogating a seven-member SNP set for genotyping S. aureus. Here, it is shown that these seven SNPs efficiently resolve the major MRSA lineages and define 27 genotypes. The SNP-based genotypes are consistent with the MRSA population structure as defined by eBURST analysis. The capacity of binary markers to improve resolution was tested using 107 diverse MRSA isolates of Australian origin that encompass nine SNP-based genotypes. The addition of the virulence-associated genes cna, pvl and bbplsdrE, and the integrated plasmids pT181, p1258 and pUB110, resolved the nine SNP-based genotypes into 21 combinatorial genotypes. Subtyping of the SCCmec locus revealed new SCCmec types and increased the number of combinatorial genotypes to 24. It was concluded that these polymorphisms provide a facile means of assigning MRSA isolates into well-recognized lineages.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we review recent theoretical approaches for analysing the dynamics of on-line learning in multilayer neural networks using methods adopted from statistical physics. The analysis is based on monitoring a set of macroscopic variables from which the generalisation error can be calculated. A closed set of dynamical equations for the macroscopic variables is derived analytically and solved numerically. The theoretical framework is then employed for defining optimal learning parameters and for analysing the incorporation of second order information into the learning process using natural gradient descent and matrix-momentum based methods. We will also briefly explain an extension of the original framework for analysing the case where training examples are sampled with repetition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Road traffic accident involvement rates show that younger males are over represented in accidents. A number of studies have shown individual differences in accident involvement. Questionnaire-based methods to investigate individual and group differences in driver stress and risk perceptions reported in chapter 2 and 3 revealed that neuroticism was associated with; heightened perception of personal risk, driver stress, and inefficient coping strategies. Younger drivers and female drivers reported higher levels of stress. Young male drivers assessed their personal risk and driving abilities less realistically than did other age and sex groups. Driving simulator-based methods reported in chapter 4 revealed that young drivers and male drivers; drive faster, overtake more often, and commit more `high risk' overtakes than do other age and sex groups. Middle-aged and elderly drivers were poorer at maintaining a fixed distance from a lead `vehicle'. Older drivers adopt a slower, more cautious driving style, but appear to be worse at controlling distance from a `lead' vehicle. Results are consistent with individual and group differences in accident involvement rates. Findings are discussed with reference to the implementation of driver education programs to reduce stress, the adoption of more realistic perceptions of risk among younger drivers, and the training of compensation strategies to counteract age-related changes in older drivers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conventional methods of form-roll design and manufacture for Cold Roll-Forming of thin-walled metal sections have been entirely manual, time consuming and prone to errors, resulting in inefficiency and high production costs. With the use of computers, lead time can be significantly improved, particularly for those aspects involving routine but tedious human decisions and actions. This thesis describes the development of computer aided tools for producing form-roll designs for NC manufacture in the CAD/CAM environment. The work was undertaken to modernise the existing activity of a company manufacturing thin-walled sections. The investigated areas of the activity, including the design and drafting of the finished section, the flower patterns, the 10 to 1 templates, and the rolls complete with pinch-difference surfaces, side-rolls and extension-contours, have been successfully computerised by software development . Data generated by the developed software can be further processed for roll manufacturing using NC lathes. The software has been specially designed for portability to facilitate its implementation on different computers. The Opening-Radii method of forming was introduced as a subsitute to the conventional method for better forming. Most of the essential aspects in roll design have been successfully incorporated in the software. With computerisation, extensive standardisation in existing roll design practices and the use of more reliable and scientifically-based methods have been achieved. Satisfactory and beneficial results have also been obtained by the company in using the software through a terminal linked to the University by a GPO line. Both lead time and productivity in roll design and manufacture have been significantly improved. It is therefore concluded that computerisation in the design of form-rolls for automation by software development is viable. The work also demonstrated the promising nature of the CAD/CAM approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In today's market, the global competition has put manufacturing businesses in great pressures to respond rapidly to dynamic variations in demand patterns across products and changing product mixes. To achieve substantial responsiveness, the manufacturing activities associated with production planning and control must be integrated dynamically, efficiently and cost-effectively. This paper presents an iterative agent bidding mechanism, which performs dynamic integration of process planning and production scheduling to generate optimised process plans and schedules in response to dynamic changes in the market and production environment. The iterative bidding procedure is carried out based on currency-like metrics in which all operations (e.g. machining processes) to be performed are assigned with virtual currency values, and resource agents bid for the operations if the costs incurred for performing them are lower than the currency values. The currency values are adjusted iteratively and resource agents re-bid for the operations based on the new set of currency values until the total production cost is minimised. A simulated annealing optimisation technique is employed to optimise the currency values iteratively. The feasibility of the proposed methodology has been validated using a test case and results obtained have proven the method outperforming non-agent-based methods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we propose a two phases control method for DSRC vehicle networks at road intersection, where multiple road safety applications may coexist. We consider two safety applications, emergency safety application with high priority and routine safety applications with low priority. The control method is designed to provide high availability and low latency for emergency safety applications while leave as much as possible bandwidth for routine applications. It is expected to be capable of adapting to changing network conditions. In the first phase of the method we use a simulation based offline approach to find out the best configurations for message rate and MAC layer parameters for given numbers of vehicles. In the second phase we use the configurations identified by simulations at roadside access point (AP) for system operation. A utilization function is proposed to balance the QoS performances provided to multiple safety applications. It is demonstrated that the proposed method can largely improve the system performance when compared to fixed control method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Congestion control is critical for the provisioning of quality of services (QoS) over dedicated short range communications (DSRC) vehicle networks for road safety applications. In this paper we propose a congestion control method for DSRC vehicle networks at road intersection, with the aims of providing high availability and low latency channels for high priority emergency safety applications while maximizing channel utilization for low priority routine safety applications. In this method a offline simulation based approach is used to find out the best possible configurations of message rate and MAC layer backoff exponent (BE) for a given number of vehicles equipped with DSRC radios. The identified best configurations are then used online by an roadside access point (AP) for system operation. Simulation results demonstrated that this adaptive method significantly outperforms the fixed control method under varying number of vehicles. The impact of estimation error on the number of vehicles in the network on system level performance is also investigated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Peptides are of great therapeutic potential as vaccines and drugs. Knowledge of physicochemical descriptors, including the partition coefficient logP, is useful for the development of predictive Quantitative Structure-Activity Relationships (QSARs). We have investigated the accuracy of available programs for the prediction of logP values for peptides with known experimental values obtained from the literature. Eight prediction programs were tested, of which seven programs were fragment-based methods: XLogP, LogKow, PLogP, ACDLogP, AlogP, Interactive Analysis's LogP and MlogP; and one program used a whole molecule approach: QikProp. The predictive accuracy of the programs was assessed using r(2) values, with ALogP being the most effective (r( 2) = 0.822) and MLogP the least (r(2) = 0.090). We also examined three distinct types of peptide structure: blocked, unblocked, and cyclic. For each study (all peptides, blocked, unblocked and cyclic peptides) the performance of programs rated from best to worse is as follows: all peptides - ALogP, QikProp, PLogP, XLogP, IALogP, LogKow, ACDLogP, and MlogP; blocked peptides - PLogP, XLogP, ACDLogP, IALogP, LogKow, QikProp, ALogP, and MLogP; unblocked peptides - QikProp, IALogP, ALogP, ACDLogP, MLogP, XLogP, LogKow and PLogP; cyclic peptides - LogKow, ALogP, XLogP, MLogP, QikProp, ACDLogP, IALogP. In summary, all programs gave better predictions for blocked peptides, while, in general, logP values for cyclic peptides were under-predicted and those of unblocked peptides were over-predicted.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As torrents of new data now emerge from microbial genomics, bioinformatic prediction of immunogenic epitopes remains challenging but vital. In silico methods often produce paradoxically inconsistent results: good prediction rates on certain test sets but not others. The inherent complexity of immune presentation and recognition processes complicates epitope prediction. Two encouraging developments – data driven artificial intelligence sequence-based methods for epitope prediction and molecular modeling methods based on three-dimensional protein structures – offer hope for the future.