984 resultados para SANS
Resumo:
利用OM及FEM研究了铁基合金Nd:YAG脉冲激光熔凝区的几何形态及其变化规律、以及熔凝的热物理过程;利用OM、SEM、TEM、X-射线衍射仪及磨损实验机,研究了两种铁基热模具材料脉冲激光熔凝组织及其时效组织结构,以及熔凝区规则离散分布规律对材料抗磨损性能的影响。在10~5~10~7W/cm~2的脉冲激光平均功率密度范围内,可得到热传导型和深熔型两类强化区,当临界平均功率密度大于5 * 10~5W/cm~2,同时临界激光作用时间大于2ms时,热传导型强休区向深熔型强休区转变。熔化过程中,在熔池中形成上部以对流传热为主,底部以导热为主的传热模式,流场、温度场和压力场均随脉冲激光作用时间变化,最大流速、压力和温度梯度分别可达100m/s、数个大气压和10~(8-9) ℃C/m量级。凝固过程中,固液界面上的最大温度梯度、凝固速率和冷却速度时间和空间位置变化,分别可达10~(8-9) ℃/m量级、10~(-1)m/s量级和10~(7-8) ℃/s量级,其中冷却速度得到实验验证。亚共晶合金铸铁脉冲激光熔凝组织为δ-铁素体与M_3C的层片状共晶组织,还含有部分γ-奥氏体和少量的高碳孪晶马氏体组织,δ-铁素体和γ-奥氏体中均存在高密度位错亚结构。5CrMnMo钢脉冲激光熔凝组织由板条马氏体及少量的孪晶马氏体构成,马氏体中也存在高密度位错亚结构。上述两种组织经高温时效后,仍保持较细的晶粒,并有大量细小均匀弥散分布的碳化物析出,其中铸铁熔凝组织析出M_(23)C_6碳化物,M_(23)C_6可在M_3C/γ-奥氏体相界面或M_3C内部原位形核,亦可在δ-铁素体中弥散析出。两种材料的熔凝组织及其时效组织的显微硬度均明显高于相应的原始组织,也高于激光连续扫描熔凝的结果。脉冲激光规则离散熔凝加工在材料表面形成软硬相间的“原位”功能层,能显著降低裂纹形成的敏感性,提高材料表层的抗磨粒磨损性能,时效后仍具有较好的抗磨损性能。以熔凝强化区直径作为中心间距进行规则离散熔凝处理可使材料表面获得最佳抗磨损性能。
Resumo:
本文所做的工作,是为研究与探索乙烯新工艺-气动加热裂解法制取乙烯作铺垫。其任务是设计并加工一套燃气发生器系统以产生高焓超声速载气。这里所说的载气,其成分实际上就是水蒸气。从化学动力学的角度察看热裂解制取乙烯这一化学反应,为提高乙烯的单程产率,必须为原料气的裂解反应创造所需的高温条件,相应缩短原料气在高温的驻留时间。但是,目前的竖管式裂解炉制取乙烯工艺,由于采用炉管外加热,工艺受炉管的材料、传热等性能的,因此原料气的反应湿度并未达到高乙烯产率所要求的裂解温度,并且反应停留时间过长。在探索如何提高乙烯的单程产率这一问题上,气动加热裂解法可以说是一重要里程碑。新方法提出了一全新概念:让反应气流通过强激波,气流通过激波后由于其温度的急剧升高而发生热裂解。此方法的关键问题是:(1)如何使反应气流产生强激波而进行自加热;(2)如何合理控制反应气流的裂解反应时间,即其驻留高温状态的时间。针对第一个问题,解决的方案是以高焓声速载气(即水蒸气)与反应气流进行混合,以提高反应气流的速度与温度。本文的工作,集中在如何产生高焓水蒸气这一问题上。其主要任务,就是设计与加工一套以氢气与氧气为燃料与氧化剂的燃气发生器系统。本文主要概括论述了其中一的些关键性问题:(1)氢气与氧气的流量与混合比的控制。组合使用稳压阀(或稳压器)与临界流量喷管,以控制氢氧流量及其混合比。(2)燃烧室燃气温度的控制。由于氢氧直接燃烧后产生的水蒸气温度太高;同时乙烯裂解试验方案要求载气温度具有可调节性,这就要求燃气发生器产生的水蒸气其温度在一定范围内可调控。采取的方案是向燃烧室喷入水雾,藉以控制燃气温度。(3)燃烧室压力控制。与燃气的温度必须具有可调节性要求一样,乙燃总体试验方案要求其压力也具有可调节性。采取的方案有两种:首先是调节氢氧配气系统中汇流排的总压值以改变氢氧各自的流量,从而达到改变燃烧室的燃烧压力;其次,调节尾喷管喉道的大小可以达到改变燃烧室压力的目的。(4)点火与燃烧稳定性。采用加热电阻丝的点火方案。实验表明,低压状态(小于10大气压)下氢氧燃烧稳定性没有太大问题。在设计的燃气发生器上,我们分别适当改变了供气参数(主要是压力参数)与尾喷管喉道面积以察看各种工况下燃气发生器的工作情况;测定了燃烧室内燃气的压力参数的改变趋势,并根据燃气的流量与压力对燃气的温度进行了估算,从中得出一些基本结论:(1)尾喷管喉道面积减小时,燃烧室的压力将增大。在未改变氢氧供气来流的情况下,燃烧室压力与尾喷管喉道面积基本成反比关系;同时,随着燃烧室压力的增大,燃气的温度略有所降低。(2)继续减小尾喷管喉道面积,由于燃烧室压力的增大,这将破坏供气系统中临界喷管的临界工作状态,从而改变(减小)氢氧的来流流量、并很有可能破坏氢氧的化学当量配比,这将彻底改变燃气的成分与温度。(3)增加氢氧的来流压力时,燃烧室压力将增大,同时燃气温度也有明显增加;燃烧室压力与尾喷管喉道面积仍然呈反比关系,但两者乘积值将增大。(4)燃烧室压力较小时,燃烧现象有高频的振荡,但压力振幅较小;当尾喷管面积减小而导致燃烧室压力增大时,燃烧振荡将由高频转为低频,同时压力振幅增大。锅炉、卵石床都能产生高焓水蒸气。由于总体方案要求的水蒸气流量小,与其它方法相比,以氢氧燃烧的方法产生的水蒸气,其温度更高、更符合乙烯总体方案的要求,温度、压力等参数的调节方便,而且相对而言设备较为简单,是一种切实可的方案。
Resumo:
水泥回转窑是建材工业发展的方向,我国是水泥生产大国,而国内回转窑与发达国家相差甚大,尤其在热工控制方面。由于水泥回转窑具有时变、分布参数和非线性特性,是一个典型的复杂过程,因而水泥回转窑控制系统是一个很有意义且困难的研究方向,本论文在借鉴国内外同类研究的基础上,提出了模糊专家系统控制模型,进行了深入地研究,并且对该模型进行了计算机仿真,希望通过这项研究,提高我国在水泥回转窑先进智能技术的控制水平。主要研究内容有:对水泥回转窑的热工过程进行了详细分析,对其不同控制方法进行全面的综述,对水泥回转窑实现控制的人工智能方法进行了全面的综述,并介绍了国内外的研究现状;研究了对水泥回转窑控制的模糊控制模型、专家系统设计方法,以及利用模糊控制与专家系统相结合的方法对水泥回转窑进行安全而有效控制的方法:研究了专家系统的实时性问题,提出了静态排列专家系统的推理时间模型、优化排列专家系统的时间估计模型与排列准则;利用计算机仿真方法,实现对水泥回转窑这种复杂而昂贵系统控制进行实验研究,以较低的代价实现对其分析。本论文的主研究成果如下:1. 详细研究了水泥回转窑的技术发展与结构演化过程,分析了水泥回转窑的热工过程以及影响水泥生产的各种因素,总结了影响水泥生产质量的主要因素与次要因素,确定了控制水泥回转窑的主要并且可测量的过程参数。2. 用推理全成方法研究模糊控制模型,实现从模糊的角度研究水泥回转窑的控制:从专家 系统角度研究水泥回转窑的控制问题,并提取了有关的专家系统控制规则;在模糊控制与专家系统的基础上,将水泥回转窑的模糊控制与专家系统相结合,利用层次化的控制器结构,底层为模糊控制器,顶层为专家系统,实现了水泥回转窑的安全与有效控制。3. 从定量的角度研究了专家系统的推理时间问题,给出了三种相应的时间估计模型,这不仅可以分析水泥回转窑系统中的专家系统的实时性,而且也可以分析一般专家系统的推理时间和问题。4. 本文提出的计算机仿真工具,为三组数据分别进行计算机仿真,以此研究水泥回转窑控制策略的性能以及对其动态过程进行分析,为水泥回转窑这样的复杂且昂贵的控制系统研究提供有效的手段。
Resumo:
本文首先对饱和砂土在动载荷下的液化、密实和结构破坏等方面做了文献综述,同时也叙述了化工冶金中的液固流态化的有关情况。本文探讨了饱和砂土中产生水平裂缝和纵向通道等现象的机理。为此,进行了扁平砂柱的落锤冲击实验和模拟圆柱落锤冲击实验中产生水平裂缝和纵向通道等现象的底部加压实验。扁平砂柱落锤冲击实验的目的是为了更清楚地观察饱和砂土结构破坏和孔隙水流动的情况,观察纵向通道和水平裂缝的产生和发展,以及水平裂缝和纵向通道之间的联系。为了探讨水平裂缝和纵向通道产生的条件和机理,设计和进行了底部加压实验,用来模拟落锤冲击实验的后期变形和渗流效应,测量出现水平裂缝和纵向通道时的超孔隙水压力和平均水流速度,统计分析采用什么样的参数可以表征水平裂缝和纵向通道的出现及其特性,发现液化指数等于1是出现水平裂缝的必要条件。此外,针对含有细砂层的饱和砂土在该层出现水平裂缝的现象,提出了一个简化模型,推导出砂柱的液化指数一维分布,根据液化指数等于1才能出现水平裂缝,能够说明水平裂缝出现的条件和位置。
Resumo:
激光柔性加工是近几年兴起的一种先进制造技术,它结合了激光加工与柔性制造的特点,有很好的应用前景。在本论文中,讨论了与之相关的课题研究,其中包括:(1)激光器的稳定控制。包括激光器通讯方式的研究,底层驱动程序(VxD)的特点和开发应用,并给出了相关程序的解释。(2)激光器控制程序的开发。包括程序的设计思想、主要模块的功能和激光参数数值化控制的实现。(3)激光柔性加工系统控制软件的开发。包括软件的设计目标、主要功能、模块构成和软件易用性设计。(4)激光加工工艺试验。研究了主要的模具材料经过激光表面强化后粗糙度、材料组织、硬度以及耐磨性等主要力学性能的改善。薄板打筛孔主要分析了激光打孔的优势所在。
Resumo:
非传播孤立波是近年来由中国学者发现的一种独特的孤立水波。本文通过数值求解非传播孤立波目前公认的控制方程-Miles导出的一个带共轭项的非线性立方Schrodinger方程,对非传播孤立波进行数值模拟。本文针对非传播孤立波的各种性质,作了大量的数值计算工作,并与实验观察的现象及人们对非传播孤立波的理论研究结果进行了比较和分析。为了得到稳定的非传播孤立波,本文讨论了Miles方程中的线性阻尼系数a的值,计算表明,线性阻尼a对能否形成稳定的非传播孤立波影响很大,在某些情况下,Laedke等人提出的Miles方程的非传播孤立波解的稳定性条件与我们对Miles方程的数值模拟的结果相当一致,a可在满足稳定性条件的区间内取值,但也发现在某些情况下Laedke等人的稳定性条件与我们的数值模拟不完全符合,证明Laedke等人关于非传播孤立波的稳定性条件只是一个必要条件,而不是充分条件。本文研究了两个非传播孤立波的相互作用,数值模拟表明,两个波的作用模式依赖于系统的参数,只有适当大小的外驱动频率和振幅及线性阻尼a可算出两个非传播孤立波周而复始的相互作用现象来,参数不合适时,两个波可能最终合并为一个非传播孤立波而不再分离,也可能彼此不发生作用,保持各自的独立。对不同的初始扰动及其演化的计算表明,要形成单个稳定的非传播孤立波,则初始扰动必须适当,否则扰动可能消失或发展成多个孤立波。关于形成非传播孤立波所需的外驱动条件,计算结果表明,只有适当大小的外驱动频率和振幅可形成稳定的非传播孤立波,数值结果可以描述驱动频率的上限和驱动振幅的上下限,但无法描述驱动频率的下限。我们的数值模拟工作说明Miles方程确实较好的描述了非传播孤立波的物理模型,该方程可以解释许多关于非传播孤立波的物理特性。但Miles方程无法对非传播孤立波的某些实验现象作出解释,因而有待于进一步研究改进。
Resumo:
本文对CH_4横向喷入超音速高温空气主流的二维流场进行了数值模拟,对CH_4-O_2的六方程反应模式进行了检验,借以对混合与燃烧过程的现象与机理加以研究,并与单方程反应模型及H_2横向喷射的情况进行了对比。得到了较为理想的结果。本文采用二维雷诺平均全N-S方程进行计算,采用热完全气体模型,用Baldwin-Lomax代数涡粘性湍流模型来模拟湍流效应。假定N_2不参加反应,CH_4-O_2反应机制选取六个基本反应,以及九个组元O、O_2、CH_3、CH_4、OH、CHO、CH_2O、CO和CO_2,应用空间二阶精度Harten-Yee隐式TVD格式,采用化学源项点隐的全隐方法数值求解。本文对多种超音速空气主流及边界条件的工部进行了数值模拟,并对其流场进行了分析。针对工作中出现的问题,提出了对下一步工作的展望。
Resumo:
岩体中爆炸效应的研究主要包括爆炸产生的振动效应和岩体的鼓包运动规律。其力学过程十分复杂,研究的主要困难在于定量描述岩体的结构性质、爆源形式及其与周围岩体相互作用的规律等。在工程应用上关系到如何提高爆破工程的效率,减少爆炸引起的危害及降低对爆炸工程的制约。开展上述相关课题的研究,不仅具有重要的工程意义,也是爆炸力学的前沿工作。 本文取得的主要成果如下: 1. 独立开发了具局部块体细化功能和块体可变形功能的多尺度可变形离散元软件,通过波的传播试验以及与商用软件计算结果的比较,验证了该程序的可靠性和数值计算精度。 2.改进了集中装药和柱状装药的爆源模型,建立了适合爆源附近岩体结构的多尺度计算模型,加强了块体离散元在岩土中爆破分析的实用性。 2.给出了块体离散元中弹簧断裂与能量损耗的关系,并用数值模拟方法得到了岩体中爆源周围细小结构面对爆炸能量衰减的影响规律、爆腔压力的脉动特征,模拟得到了不同岩体材料性质、岩体结构对爆破鼓包运动的规律。 3.实验成功了一种探测地质体结构的方法-可控爆源,这种爆源把炸药放在水中爆破,减少了爆源周围岩体结构对岩体中爆炸波的影响,使得爆炸载荷更为准确,已有的实验结果表明:采用新的爆源能够获得重复性很好的振动图形。 4.通过模型试验和数值模拟研究了弱面结构对爆破振动的影响,给出了弱面附近质点振动的放大效应,通过研究振动衰减规律确定了一定厚度的软弱夹层对爆破振动的衰减系数,为爆破地震波探测地质体结构提供了新的认识和数值研究工具。 5.用可变形块体离散元模型分析得到了茅坪滑坡体上的地质参数和主要的地层结构,给出了材料的弹性模量和泊松比。
Resumo:
可控坍塌芯片互连(C4)技术可以实现高速、高密度、小外形的封装,因此日渐得到关注和发展。本文针对发展新一代c4技术所面临的不流动芯下材料的机械性能问题,采用具有不同填充颗粒含量的不流动芯下材料,通过对材料的机械性能的测试和分析以及有限元模拟,初步揭示了不流动芯下材料变形行为的特点,填充颗粒含量对芯下材料机械性能的影响,以及芯下材料机械性能和芯下材料工艺导致的颗粒沉积对封装可靠性的影响。首先在差示扫描量热仪(DSC)、热一力学分析仪(TMA)上对材料的固条件、热膨胀系数、玻璃化转变温度进行了测试,接着又在六轴微型试验机上对材料在不同温度和应变率下的应力一应变行为进行了测试。测试结果表明,所用材料的固化条件和玻璃化转变温度可以满足不流动芯下材料的性能要求,材料的热膨胀系数高于芯下材料理想的热膨胀系数值,材料中填充颗粒含量、温度、应变率等对材料的应力一应变行为有重要的影响。为了解芯下材料中填充颗粒含量对机械性能的影响,对不同颗粒含量材料在各测试温度和应变率下的杨氏模量、屈服强度和流动应力进行了对比和分析。结果表明,在各测试条件下,芯下材料的杨氏模量基本随着颗粒含量的增加而升高;温度较低时,材料的屈服强度随颗粒含量的增加而升高,但是,较高温度时,材料的屈服强度和流动应力随着颗粒含量的增加呈现先升高后降低再升高的变化趋势。为理解芯下材料的屈服强度和流动应力随着颗粒含量非单调变化的行为,采用广义Eshelby等效夹杂法对含颗粒试样在单轴拉伸时试样内的应力分布进行了分析,并用纳米硬度计对材料纳米尺度的性能进行了测量。应力分析的结果表明,不流动芯下材料的SiO2填充颗粒的加入会在基体里引起应力集中,应力集中系数随着颗粒含量的增加先升高后降低,试样内的应力集中有使材料屈服强度降低的趋势。纳米硬度计的测试结果表明,芯~卜材料内形成了性能介于颗粒Z基体之间的界面相,界面相的形成有使芯下材料屈服强度提高的趋势。芯下材料屈服强度随着填充颗粒含量的非单调的变化是应力集中和界面效应藕合作用的结果。温度和应变率是影响芯下材料机械性能的重要因素。为刻画温度和应变率的效应,采用Pe化yna模型描述材料的应力一应变行为。结果表明,Per叮na模型可以拟合材料应变率相关的应力一应变行为,描述不流动芯下材料应力一应变曲线的基本趋势,对材料在测试范围外的行为给出较合理的预测,并且Perzyna模型可以很方便地用于ABAQUS中,这将易于工业应用。最后,采用商用有限元程序AB AQus分析了芯下材料机械性能和芯下材料工艺导致的填充颗粒沉积对C4封装可靠性的影响。结果表明,在芯片/基板的缝隙中填入芯下材料可以显著延长可控坍塌倒装封装焊点的热疲劳寿命,提高封装可靠性,可控坍塌倒装封装焊点的热疲劳寿命随着芯下材料中填充颗粒含量的增加而增长;芯下材料中填充颗粒在C4封装基板侧的沉积将导致封装焊点的热疲劳寿命缩短,而颗粒在芯片侧的沉积则可使焊点的热疲劳寿命稍稍延长。
Resumo:
本文利用挤铸造方法结合热压的方法制备了Al_(18)B_4O_(33)w/Al和SiCw/Al复合材料,实现了对增强体取向的调整。利用SEM在位观测、MTS宏观拉伸等实验方法研究了复合材料的细观结构、细观损伤演化规律和材料的宏观性能。通过理论分析、数值计算,结合实验的方法,定量地讨论了材料性能和其微观结构参数之间的关系,定性地总结了短纤维增强金属基复合材料的细观损伤演化规律。经过分析和实验,阐明了热挤压对短纤维增强金属基复合材料增强体空间取向性(取向密度)的影响;讨论了在短纤维增强金属基复合材料中宏观应变和基体、增强体应变的关系;并且进一步研究了密排、多取向群体短纤维增强体的应变,在材料处于弹性和塑性阶段的演化规律;提出了利用增强体轴向应变和材料宏观应变在该方向的分量之比值λ_f来描述增强体增强效果,给出了λ_f在材料承载过程中的演化规律;总结了短纤维增强金属基复合材料的性能(弹性模量)和晶须空间取向之间的关系;利用修正了的混合定律比较好地预测了短纤维增强金属基复合材料的弹性模量;并且进一步预测了短纤维增强金属基复合材料的弹塑性性能。
Resumo:
可压平面混合层是包含复杂多时空尺度运动的非定常流体力学部问题,具有深刻的理论意义和广泛的应用背景。针对该问题所涉及内容的多面性,本文的目的是,基于高精度、高分辨率数值算法的构造、发展和数值行为分析,采用线性稳定性分析和直接数值模拟方法。从理论和计算两方面集中研究压缩性效应、粘性效应、初值效应以及燃烧反应放热效应等对可压平面混合层早期稳定性行为和大尺度拟序涡结构非线性演化的影响。以混合层已有研究成果的分析和综述为开端,论文主体共包括四部分:第一部分是可压平面混合层时间/空间模式数值线性稳定性分析。实现了高精度对称紧致差分格式(SCD)对可压粘性扰动线性稳定性边值问题的求解,对导出的线性和非线性离散特征值问题,提出了两个高效局部解法。研究涉及二维/三维扰动波、无粘/粘性扰动波、特征函数和特征值谱、第一/第二模态、超声速快/慢模态、速度比和密度比等。验证了对流Mach数Mc为一个合理的压缩性参数。指出压缩性效应和粘性效应对最不稳定扰动波的波数(频率)和增长率呈相拟的抑制作用,且时间模式稳定性分析结果在许多方面是可信的。从随机和线性扰动场出发,采用高精度五阶迎风紧致和六阶对称紧致混合差分算法(UCD5/SCD6)对可压平面混合层的稳定性特征进行了直接数值模拟,揭示了初始主导线性扰动与一些实际涡结构非线性作用形态间的内在关联,印证了线性稳定性分析方法的合理性和有效性。第二部分是高精度迎风紧致差分格式(UCD)时空全离散数值行为分析。导出了其一维/二维一般色散表达式。研究表明,UCD格式在高波数区具有内在的全离散耗散和色散特性;其数值群速度的快/慢特征可因CFL数不同而改变;在稳定CFL数下简单附加人工粘性可强化UCD格式在高波数区的耗散量;提高时间精度可放宽稳定CFL数限制;UCD格式的二维全离散色散介质中存在三个不同性质的数值波,其全离散稳定性由数值声波主控。第三部分实现了高精度UCD5/SCD6差分算法对空间发展可压平面混合层的直接数值模拟。通过亚谐扰动波的个数和扰动频率的控制,捕捉到了基频涡的饱和、一次和二次对并等现象,显示了大尺度涡结构与入中初始扰动方式之间的内在联系。利用参数Mc观察了压缩性效应对大尺度涡空间演化及其相互作用的影响。第四部分实现了高精度UCD5/SCD6差分算法对非预混扩散火焰化学反应平面混合层的直接数值模拟。研究指出,放热效应可抑制和延迟涡的形成,使基频涡卷拉伸甚至丧失,混合层Reynolds 应力ρu'v'和流向速度波动关联项u'v'下降,以致涡结构与外流动量交换和标量输运减少,脉动输运能力被削弱,从而混合效率、产物生成率和混合层增长率下降,放热主要通过膨胀效应和斜压效应来抑制大尺度涡的演化。
Resumo:
本文研究粘弹性材料界面裂纹对冲击载荷的瞬态响应和对广义平面波的稳态散射。相对于已有广泛研究的弹性材料裂纹瞬态响应和稳态散射问题,本文的研究有三个突出特点:1)粘弹性材料;2)界面裂纹;3)广义平面波入射。粘弹性材料界面裂纹对冲击载荷的瞬态响应和对广义平面波的散射尚无开展研究,本文在弹性材料相应问题的研究基础上,首先开展了这一问题的研究。对于冲击载荷下粘弹性界面裂纹的瞬态响应问题,利用Laplace积分变换方法,将粘弹性材料卷积型本构方程转化为Laplace变换域内的代数型本构方程,从而可以在Laplace变换域内象处理弹性材料的冲击响应一样,将相应的混合边值问题归结为关于裂纹张开位移COD的对偶积分方程,并进一步引入裂纹位错密度函数CDD (Crack Dislocation Density),将对偶积分方程化成关于CDD的奇异积分方程(SIE)。用数值方法求解奇异积分方程得到变换域内的动应力强度因子数值解,最后利用Laplace积分逆变换数值方法得到时间域内的动应力强度因子的时间响应。理论分析考虑了两种裂纹模型,即Griffith界面裂纹和柱面圆弧型界面裂纹。考虑的载荷包括反平面冲击载荷和平面冲击载荷。对于平面冲击载荷,通过对裂尖应力场的奇性分析,首次发现粘弹性界面裂纹裂尖动应力场奇性指数不是常数0.5,而是与震荡指数一样依赖材料参数。针对反平面冲击载荷给出了一个算例,计算了裂尖动应力强度因子的时间响应,并与弹性材料的结果作了比较,发现粘弹性效应的影响不仅使过冲击峰值降低,而且使峰值点后移。粘性效应较大时,过冲击现象甚至不出现。关于粘弹性界面裂纹对广东省义平面波的散射问题,首先研究广义平面波在无裂纹存在的理想界面的反射和透射,再研究由于界面裂纹的存在而产生的附加散射场。利用粘弹性材料的复模量理论,可将粘弹性材料的卷积型相构方程化成频率域内的代数型本构方程。类似弹性平面波的处理,在频率域内将问题最终归结为关于裂纹位错密度CDD的奇异积分方程。数值方法求解奇异积分方程即可得到频率域内的散射场,并进而得到裂尖动应力强度因子和远场位移型函数和散射截面。理论分析考虑了两种裂纹模型:Griffith界面裂纹和柱面圆弧型界面裂纹。研究的入射波有广义的SH波和P波。对于广义平面P波入射的情况,通过对裂尖应力场的奇性分析,同样发现粘弹性界面裂纹裂尖动应力场奇性指数不地常数0.5,而是与震荡指数一样依赖于材料参数。对柱面裂纹散射远场的渐近分析,发现远场位移和应力除含有几何衰减因子外,都含有一个材料衰减速因子。散射截面由于材料衰减因子的存在也成为依赖散射半径的量。为了使散射截面仍有意义,文中提出一种修正办法。对Griffith界面裂纹,给出了一个广义平面SH波入射的算例;对柱面界面裂纹,给出了一个广义平面P波入射的算例。计算了不同入射角和入射频率下裂纹的张开位移和动就应力强度因子,并分析了其依赖关系。求解奇异积分方程的数值方法和Laplace积分逆变换数值方法是本文的基本数值方法。本文对这两种方法作了大量的调研和系统的研究。在对比分析的基础上,对现有的各种方法从原理,适用范围,计数效率,优势及特点进行了归纳总结。并尝试了奇异积分方程的最新数值方法--分片连续函数法,证实了其适用性和方便性.
Resumo:
在白以龙小组已有工作的基础上,利用他们提出的简化的耦合斑图模型,几种可能的应力重分配模型在该论文中得到了进一步的讨论。通过不同的应力重分配模型,我们发现了该类演化过程中的三个一般规律,这些规律对于类似的动力过程的预报(例如,非均匀介质的破坏)提供了线索。首先,我们采用系综统计的方法,对相同宏观参量的大量样本的强度分布作了考察,结果表明:宏观强度的统计结果可以非常好的拟合为Weibull分布,且其Weibull模数与系统的大小、应力重分配的方式以及细观单元的强度分布相关。其次,在模拟过程中,对演化过程中的能量释放、损伤事件的统计发现,它们存在标度行为,而且这一标度主要归因于灾变点附近的损伤事件。这一现象表明这一转变具有某种临界特征。最后,对于我们模型中的动力学过程,我们发现了灾变预报的线索。从样本演化过程 中的能量释放规律来看,我们发现有两件事是有意义的:一是辨别出主破坏的发生点(在这一时修,系统中的大部分能量得到释放);另外,给出转变点(整体稳定转化为演化诱致灾变)的预报。对前一个问题,我们通过考察系统在GS和EIC段的应力损伤涨落特征可以给出回答,通常,在EIC段的最大应力涨落(通常出现在主破坏过程中)比在GS过程中的最大应力涨落高一个数量级,根据这一差异,可以设立一个应力涨落的警戒值来判断系统所处的演化状态。对于后者,受到地震预报中采用的加卸载响应比(LURR)的启发,我们通过对系统中的外回转应力或损伤单元施加一个微增扰动,然后,根据系统在扰动前后释放的能量和相应的扰动,就可以得到临界敏感系数,临界敏感系数在灾变点附近迅速增加,在灾变点之迅速下降到1附近-我们称这一特征为临界敏感性。不同的应力重分配模型下得到了类似的现象,由此看来,对于 类似的动力学过程,临界敏感性是一个一般的特征。这一特征可能为我们对非均匀脆性介质的破坏提供线索。
Resumo:
纳米晶体材料是由尺度在1-100nm的微小颗粒组成的体系.该文应用分子动力学结合Finnis-Sinclair多体势函数模拟了纳米晶铜的微观结构和单向拉伸变形,以及纳米铜晶粒的结构与扩散性质,并采用了局部晶序分析、晶向分布函数等多种手段,对它们的结构进行了分析.研究了晶粒尺寸的变化对它们的影响.对纳米晶铜的微观结构的模拟表明:随着晶粒尺寸的减小,纳米晶体的晶界结构变化并不明显,而晶粒内部的晶格畸变加剧,导致其结构的无序度明显增加,并且晶粒内部结构和晶界结构的差别也越来越小;晶粒内部的原子的平均能量明显升高,但界面原子的平均能量变化很小.由于受晶格畸变和晶界比例增加的影响,纳米晶体的密度小于单晶的密度.对纳米晶粒的结构与扩散性质进行了分子动力学模拟的结果显示:随着晶粒尺寸的减小,晶粒表面层包含的原子比例迅速增加,表面层的原子平均能量上升,而晶粒内部的保持不变,但不仍然要高于相应单晶体的值,而表面层的厚度基本为一常数.纳米晶粒的扩散系数随着它的尺寸的增加而迅速减小,虽现指数衰减关系.这种减小主要是由于晶粒的表面层原子比例的减小和这些原子的能量降低有关.表面原子的扩散在晶粒的扩散中占主导的地位.
Resumo:
高频感应等离子体风洞适合于基础研究特别是用于防热材料的催化特性的研究,本文用实验测量和数值模拟了该风洞的温度场和速度场。温度场是用OSA (Optical Spectrum Analyzer)进行光谱分析得到的,同时用水冷总压和静压探针对风洞的流场进行测量得到了速度场的空间分布。数值模拟采用完全二维的高频感应等离子模型,我们通过求解相关的能量方程、流体动力学方程和电磁场方程得到了相应的温度场和流场。比较了数值模拟结果与实现测量结果,并给出了不同运行参数下的典型数值结果。