高焓超声速载气的产生
Contribuinte(s) |
俞鸿儒 林建民 |
---|---|
Data(s) |
2000
|
Resumo |
<span style="font-family: 'Trebuchet MS', 'Lucida Sans Unicode', Arial, sans-serif; line-height: 22px">本文所做的工作,是为研究与探索乙烯新工艺-气动加热裂解法制取乙烯作铺垫。其任务是设计并加工一套燃气发生器系统以产生高焓超声速载气。这里所说的载气,其成分实际上就是水蒸气。从化学动力学的角度察看热裂解制取乙烯这一化学反应,为提高乙烯的单程产率,必须为原料气的裂解反应创造所需的高温条件,相应缩短原料气在高温的驻留时间。但是,目前的竖管式裂解炉制取乙烯工艺,由于采用炉管外加热,工艺受炉管的材料、传热等性能的,因此原料气的反应湿度并未达到高乙烯产率所要求的裂解温度,并且反应停留时间过长。在探索如何提高乙烯的单程产率这一问题上,气动加热裂解法可以说是一重要里程碑。新方法提出了一全新概念:让反应气流通过强激波,气流通过激波后由于其温度的急剧升高而发生热裂解。此方法的关键问题是:(1)如何使反应气流产生强激波而进行自加热;(2)如何合理控制反应气流的裂解反应时间,即其驻留高温状态的时间。针对第一个问题,解决的方案是以高焓声速载气(即水蒸气)与反应气流进行混合,以提高反应气流的速度与温度。本文的工作,集中在如何产生高焓水蒸气这一问题上。其主要任务,就是设计与加工一套以氢气与氧气为燃料与氧化剂的燃气发生器系统。本文主要概括论述了其中一的些关键性问题:(1)氢气与氧气的流量与混合比的控制。组合使用稳压阀(或稳压器)与临界流量喷管,以控制氢氧流量及其混合比。(2)燃烧室燃气温度的控制。由于氢氧直接燃烧后产生的水蒸气温度太高;同时乙烯裂解试验方案要求载气温度具有可调节性,这就要求燃气发生器产生的水蒸气其温度在一定范围内可调控。采取的方案是向燃烧室喷入水雾,藉以控制燃气温度。(3)燃烧室压力控制。与燃气的温度必须具有可调节性要求一样,乙燃总体试验方案要求其压力也具有可调节性。采取的方案有两种:首先是调节氢氧配气系统中汇流排的总压值以改变氢氧各自的流量,从而达到改变燃烧室的燃烧压力;其次,调节尾喷管喉道的大小可以达到改变燃烧室压力的目的。(4)点火与燃烧稳定性。采用加热电阻丝的点火方案。实验表明,低压状态(小于10大气压)下氢氧燃烧稳定性没有太大问题。在设计的燃气发生器上,我们分别适当改变了供气参数(主要是压力参数)与尾喷管喉道面积以察看各种工况下燃气发生器的工作情况;测定了燃烧室内燃气的压力参数的改变趋势,并根据燃气的流量与压力对燃气的温度进行了估算,从中得出一些基本结论:(1)尾喷管喉道面积减小时,燃烧室的压力将增大。在未改变氢氧供气来流的情况下,燃烧室压力与尾喷管喉道面积基本成反比关系;同时,随着燃烧室压力的增大,燃气的温度略有所降低。(2)继续减小尾喷管喉道面积,由于燃烧室压力的增大,这将破坏供气系统中临界喷管的临界工作状态,从而改变(减小)氢氧的来流流量、并很有可能破坏氢氧的化学当量配比,这将彻底改变燃气的成分与温度。(3)增加氢氧的来流压力时,燃烧室压力将增大,同时燃气温度也有明显增加;燃烧室压力与尾喷管喉道面积仍然呈反比关系,但两者乘积值将增大。(4)燃烧室压力较小时,燃烧现象有高频的振荡,但压力振幅较小;当尾喷管面积减小而导致燃烧室压力增大时,燃烧振荡将由高频转为低频,同时压力振幅增大。锅炉、卵石床都能产生高焓水蒸气。由于总体方案要求的水蒸气流量小,与其它方法相比,以氢氧燃烧的方法产生的水蒸气,其温度更高、更符合乙烯总体方案的要求,温度、压力等参数的调节方便,而且相对而言设备较为简单,是一种切实可的方案。</span> |
Identificador | |
Idioma(s) |
中文 |
Palavras-Chave | #流体力学 |
Tipo |
学位论文 |