855 resultados para Retaining


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabajo realizado por: Packard, T. T., Osma, N., Fernández Urruzola, I., Gómez, M

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ideal approach for the long term treatment of intestinal disorders, such as inflammatory bowel disease (IBD), is represented by a safe and well tolerated therapy able to reduce mucosal inflammation and maintain homeostasis of the intestinal microbiota. A combined therapy with antimicrobial agents, to reduce antigenic load, and immunomodulators, to ameliorate the dysregulated responses, followed by probiotic supplementation has been proposed. Because of the complementary mechanisms of action of antibiotics and probiotics, a combined therapeutic approach would give advantages in terms of enlargement of the antimicrobial spectrum, due to the barrier effect of probiotic bacteria, and limitation of some side effects of traditional chemiotherapy (i.e. indiscriminate decrease of aggressive and protective intestinal bacteria, altered absorption of nutrient elements, allergic and inflammatory reactions). Rifaximin (4-deoxy-4’-methylpyrido[1’,2’-1,2]imidazo[5,4-c]rifamycin SV) is a product of synthesis experiments designed to modify the parent compound, rifamycin, in order to achieve low gastrointestinal absorption while retaining good antibacterial activity. Both experimental and clinical pharmacology clearly show that this compound is a non systemic antibiotic with a broad spectrum of antibacterial action, covering Gram-positive and Gram-negative organisms, both aerobes and anaerobes. Being virtually non absorbed, its bioavailability within the gastrointestinal tract is rather high with intraluminal and faecal drug concentrations that largely exceed the MIC values observed in vitro against a wide range of pathogenic microorganisms. The gastrointestinal tract represents therefore the primary therapeutic target and gastrointestinal infections the main indication. The little value of rifaximin outside the enteric area minimizes both antimicrobial resistance and systemic adverse events. Fermented dairy products enriched with probiotic bacteria have developed into one of the most successful categories of functional foods. Probiotics are defined as “live microorganisms which, when administered in adequate amounts, confer a health benefit on the host” (FAO/WHO, 2002), and mainly include Lactobacillus and Bifidobacterium species. Probiotic bacteria exert a direct effect on the intestinal microbiota of the host and contribute to organoleptic, rheological and nutritional properties of food. Administration of pharmaceutical probiotic formula has been associated with therapeutic effects in treatment of diarrhoea, constipation, flatulence, enteropathogens colonization, gastroenteritis, hypercholesterolemia, IBD, such as ulcerative colitis (UC), Crohn’s disease, pouchitis and irritable bowel syndrome. Prerequisites for probiotics are to be effective and safe. The characteristics of an effective probiotic for gastrointestinal tract disorders are tolerance to upper gastrointestinal environment (resistance to digestion by enteric or pancreatic enzymes, gastric acid and bile), adhesion on intestinal surface to lengthen the retention time, ability to prevent the adherence, establishment and/or replication of pathogens, production of antimicrobial substances, degradation of toxic catabolites by bacterial detoxifying enzymatic activities, and modulation of the host immune responses. This study was carried out using a validated three-stage fermentative continuous system and it is aimed to investigate the effect of rifaximin on the colonic microbial flora of a healthy individual, in terms of bacterial composition and production of fermentative metabolic end products. Moreover, this is the first study that investigates in vitro the impact of the simultaneous administration of the antibiotic rifaximin and the probiotic B. lactis BI07 on the intestinal microbiota. Bacterial groups of interest were evaluated using culture-based methods and molecular culture-independent techniques (FISH, PCR-DGGE). Metabolic outputs in terms of SCFA profiles were determined by HPLC analysis. Collected data demonstrated that rifaximin as well as antibiotic and probiotic treatment did not change drastically the intestinal microflora, whereas bacteria belonging to Bifidobacterium and Lactobacillus significantly increase over the course of the treatment, suggesting a spontaneous upsurge of rifaximin resistance. These results are in agreement with a previous study, in which it has been demonstrated that rifaximin administration in patients with UC, affects the host with minor variations of the intestinal microflora, and that the microbiota is restored over a wash-out period. In particular, several Bifidobacterium rifaximin resistant mutants could be isolated during the antibiotic treatment, but they disappeared after the antibiotic suspension. Furthermore, bacteria belonging to Atopobium spp. and E. rectale/Clostridium cluster XIVa increased significantly after rifaximin and probiotic treatment. Atopobium genus and E. rectale/Clostridium cluster XIVa are saccharolytic, butyrate-producing bacteria, and for these characteristics they are widely considered health-promoting microorganisms. The absence of major variations in the intestinal microflora of a healthy individual and the significant increase in probiotic and health-promoting bacteria concentrations support the rationale of the administration of rifaximin as efficacious and non-dysbiosis promoting therapy and suggest the efficacy of an antibiotic/probiotic combined treatment in several gut pathologies, such as IBD. To assess the use of an antibiotic/probiotic combination for clinical management of intestinal disorders, genetic, proteomic and physiologic approaches were employed to elucidate molecular mechanisms determining rifaximin resistance in Bifidobacterium, and the expected interactions occurring in the gut between these bacteria and the drug. The ability of an antimicrobial agent to select resistance is a relevant factor that affects its usefulness and may diminish its useful life. Rifaximin resistance phenotype was easily acquired by all bifidobacteria analyzed [type strains of the most representative intestinal bifidobacterial species (B. infantis, B. breve, B. longum, B. adolescentis and B. bifidum) and three bifidobacteria included in a pharmaceutical probiotic preparation (B. lactis BI07, B. breve BBSF and B. longum BL04)] and persisted for more than 400 bacterial generations in the absence of selective pressure. Exclusion of any reversion phenomenon suggested two hypotheses: (i) stable and immobile genetic elements encode resistance; (ii) the drug moiety does not act as an inducer of the resistance phenotype, but enables selection of resistant mutants. Since point mutations in rpoB have been indicated as representing the principal factor determining rifampicin resistance in E. coli and M. tuberculosis, whether a similar mechanism also occurs in Bifidobacterium was verified. The analysis of a 129 bp rpoB core region of several wild-type and resistant bifidobacteria revealed five different types of miss-sense mutations in codons 513, 516, 522 and 529. Position 529 was a novel mutation site, not previously described, and position 522 appeared interesting for both the double point substitutions and the heterogeneous profile of nucleotide changes. The sequence heterogeneity of codon 522 in Bifidobacterium leads to hypothesize an indirect role of its encoded amino acid in the binding with the rifaximin moiety. These results demonstrated the chromosomal nature of rifaximin resistance in Bifidobacterium, minimizing risk factors for horizontal transmission of resistance elements between intestinal microbial species. Further proteomic and physiologic investigations were carried out using B. lactis BI07, component of a pharmaceutical probiotic preparation, as a model strain. The choice of this strain was determined based on the following elements: (i) B. lactis BI07 is able to survive and persist in the gut; (ii) a proteomic overview of this strain has been recently reported. The involvement of metabolic changes associated with rifaximin resistance was investigated by proteomic analysis performed with two-dimensional electrophoresis and mass spectrometry. Comparative proteomic mapping of BI07-wt and BI07-res revealed that most differences in protein expression patterns were genetically encoded rather than induced by antibiotic exposure. In particular, rifaximin resistance phenotype was characterized by increased expression levels of stress proteins. Overexpression of stress proteins was expected, as they represent a common non specific response by bacteria when stimulated by different shock conditions, including exposure to toxic agents like heavy metals, oxidants, acids, bile salts and antibiotics. Also, positive transcription regulators were found to be overexpressed in BI07-res, suggesting that bacteria could activate compensatory mechanisms to assist the transcription process in the presence of RNA polymerase inhibitors. Other differences in expression profiles were related to proteins involved in central metabolism; these modifications suggest metabolic disadvantages of resistant mutants in comparison with sensitive bifidobacteria in the gut environment, without selective pressure, explaining their disappearance from faeces of patients with UC after interruption of antibiotic treatment. The differences observed between BI07-wt e BI07-res proteomic patterns, as well as the high frequency of silent mutations reported for resistant mutants of Bifidobacterium could be the consequences of an increased mutation rate, mechanism which may lead to persistence of resistant bacteria in the population. However, the in vivo disappearance of resistant mutants in absence of selective pressure, allows excluding the upsurge of compensatory mutations without loss of resistance. Furthermore, the proteomic characterization of the resistant phenotype suggests that rifaximin resistance is associated with a reduced bacterial fitness in B. lactis BI07-res, supporting the hypothesis of a biological cost of antibiotic resistance in Bifidobacterium. The hypothesis of rifaximin inactivation by bacterial enzymatic activities was verified by using liquid chromatography coupled with tandem mass spectrometry. Neither chemical modifications nor degradation derivatives of the rifaximin moiety were detected. The exclusion of a biodegradation pattern for the drug was further supported by the quantitative recovery in BI07-res culture fractions of the total rifaximin amount (100 μg/ml) added to the culture medium. To confirm the main role of the mutation on the β chain of RNA polymerase in rifaximin resistance acquisition, transcription activity of crude enzymatic extracts of BI07-res cells was evaluated. Although the inhibition effects of rifaximin on in vitro transcription were definitely higher for BI07-wt than for BI07-res, a partial resistance of the mutated RNA polymerase at rifaximin concentrations > 10 μg/ml was supposed, on the basis of the calculated differences in inhibition percentages between BI07-wt and BI07-res. By considering the resistance of entire BI07-res cells to rifaximin concentrations > 100 μg/ml, supplementary resistance mechanisms may take place in vivo. A barrier for the rifaximin uptake in BI07-res cells was suggested in this study, on the basis of the major portion of the antibiotic found to be bound to the cellular pellet respect to the portion recovered in the cellular lysate. Related to this finding, a resistance mechanism involving changes of membrane permeability was supposed. A previous study supports this hypothesis, demonstrating the involvement of surface properties and permeability in natural resistance to rifampicin in mycobacteria, isolated from cases of human infection, which possessed a rifampicin-susceptible RNA polymerase. To understand the mechanism of membrane barrier, variations in percentage of saturated and unsaturated FAs and their methylation products in BI07-wt and BI07-res membranes were investigated. While saturated FAs confer rigidity to membrane and resistance to stress agents, such as antibiotics, a high level of lipid unsaturation is associated with high fluidity and susceptibility to stresses. Thus, the higher percentage of saturated FAs during the stationary phase of BI07-res could represent a defence mechanism of mutant cells to prevent the antibiotic uptake. Furthermore, the increase of CFAs such as dihydrosterculic acid during the stationary phase of BI07-res suggests that this CFA could be more suitable than its isomer lactobacillic acid to interact with and prevent the penetration of exogenous molecules including rifaximin. Finally, the impact of rifaximin on immune regulatory functions of the gut was evaluated. It has been suggested a potential anti-inflammatory effect of rifaximin, with reduced secretion of IFN-γ in a rodent model of colitis. Analogously, it has been reported a significant decrease in IL-8, MCP-1, MCP-3 e IL-10 levels in patients affected by pouchitis, treated with a combined therapy of rifaximin and ciprofloxacin. Since rifaximin enables in vivo and in vitro selection of Bifidobacterium resistant mutants with high frequency, the immunomodulation activities of rifaximin associated with a B. lactis resistant mutant were also taken into account. Data obtained from PBMC stimulation experiments suggest the following conclusions: (i) rifaximin does not exert any effect on production of IL-1β, IL-6 and IL-10, whereas it weakly stimulates production of TNF-α; (ii) B. lactis appears as a good inducer of IL-1β, IL-6 and TNF-α; (iii) combination of BI07-res and rifaximin exhibits a lower stimulation effect than BI07-res alone, especially for IL-6. These results confirm the potential anti-inflammatory effect of rifaximin, and are in agreement with several studies that report a transient pro-inflammatory response associated with probiotic administration. The understanding of the molecular factors determining rifaximin resistance in the genus Bifidobacterium assumes an applicative significance at pharmaceutical and medical level, as it represents the scientific basis to justify the simultaneous use of the antibiotic rifaximin and probiotic bifidobacteria in the clinical treatment of intestinal disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT Il presente lavoro vuole introdurre la problematica del rigonfiamento del terreno a seguito di grandi scavi in argilla. Il sollevamento del terreno dopo lo scavo può passare inosservato ma sono numerosi i casi in cui il rigonfiamento dura per molti anni e addirittura decenni, Shell Centre, London, Lion Yard, Cambridge, Bell Common, London, ecc. Questo rigonfiamento il più delle volte è impedito dalla presenza di fondazioni, si genera quindi una pressione distribuita che se non considerata in fase di progetto può portare alla fessurazione della fondazione stessa. L’anima del progetto è la modellazione e l’analisi del rigonfiamento di grandi scavi in argilla, confrontando poi i risultati con i dati reali disponibili in letteratura. L’idea del progetto nasce dalla difficoltà di ottenere stime e previsioni attendibili del rigonfiamento a seguito di grandi scavi in argilla sovraconsolidata. Inizialmente ho esaminato la teoria e i fattori che influenzano il grado e la velocità del rigonfiamento, quali la rigidezza, permeabilità, fessurazione, struttura del suolo, etc. In seguito ho affrontato lo studio del comportamento rigonfiante di argille sovraconsolidate a seguito di scarico tensionale (scavi), si è evidenziata l’importanza di differenziare il rigonfiamento primario e il rigonfiamento secondario dovuto al fenomeno del creep. Il tema centrale del progetto è l’analisi numerica tramite Flac di due grandi scavi in argilla, Lion Yard, Cambridge, e, Bell Common, London. Attraverso una dettagliata analisi parametrica sono riuscito a trovare i migliori parametri che modellano il comportamento reale nei due casi in esame, in questo modo è possibile arrivare a stime e previsioni attendibili del fenomeno rigonfiante del terreno a seguito di grandi scavi. Gli scavi modellati Lion Yard e Bell Common sono rispettivamente in Gault Clay e London Clay, grazie a famosi recenti articoli scientifici sono riuscito a evidenziare la principali propietà che diversificano i due terreni in esame, tali propietà sono estremamente differenti dalle normali caratteristiche considerate per la progettazione in presenza di terreno argilloso; sono così riuscito a implementare i migliori parametri per descrivere il comportamento dei due terreni nei diversi modelli. Ho inoltre studiato l’interazione terreno-struttura, la pressione esercitata dal rigonfiamento del terreno è strettamente funzione delle caratteristiche di connesione tra fondazione superficiale e muro di sostegno, tale pressione non deve essere ignorata in fase progettuale poichè può raggiungere importanti valori. Nello scavo di Lion Yard, considerando la presenza delle fondazioni profonde ho evidenziato il fatto che il rigonfiamento crea una forza distribuita di taglio tra i pali di fondazione ed il terreno, anche tale sollecitazione dovrebbe essere considerata ai fini della progettazione. La problematica non si ferma solo sull’interazione terreno-fondazioni, infatti durante gli scavi di importanti fondazioni londinesi lo scarico tensionale ha creato uno spostamento significativo positivo verso la superfice di tratti di tunnel della metropolita, questo fenomeno può creare seri problemi di sicurezza nella rete dei trasporti pubblici. Infine sono stati messi a confronto i risultati del programma Flac con quelli di metodi semplificati, ho trovato che utilizzando il metodo iterativo di O’Brien i risultati sono simili alla realtà e il tempo di calcolo è molto inferiore di quello richiesto utilizzando Flac, 2-3 giorni. In conclusione posso affermare che grazie ad una dettagliata analisi parametrica è stato possibile stimare il rigonfiamento del terreno, argilla sovraconsolidata, nei due casi analizzati.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we discuss the secondary market for life insurance policies in the United States of America. First, we give an overview of the life settlement market: how it came into existence, its growth prospects and the ethical issues it arises. Secondly, we discuss the characteristics of the different life insurance products present in the market and describe how life settlements are originated. Life settlement transactions tend to be long and complex transactions that require the involvement of a number of parties. Also, a direct investment into life insurance policies is fraught with a number of practical issues and entails risks that are not directly related to longevity. This may reduce the efficiency of a direct investment in physical policies. For these reasons, a synthetic longevity market has evolved. The number of parties involved in a synthetic longevity transaction is typically smaller and the broker-dealer transferring the longevity exposure will be retaining most or all of the risks a physical investment entails. Finally, we describe the main methods used in the market to evaluate life settlement investments and the role of life expectancy providers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Covalent grafting mesogenic groups to the coordination cores of the parent mononuclear low-spin and spin-crossover compounds afforded metallomesogenic complexes of iron(II). In comparison with the parent complexes the spin-crossover properties of the alkylated derivatives are substantially modified. The type of the modification was found to be dependent on the properties of the parent system and the nature of the used anion, however, the general tendency is the destabilization of the low-spin state at the favor of spin-crossover or high-spin behavior below 400 K. The structural insight revealed the micro-segregated layered organization. The effect of the alkylation of the parent compounds consists first of all in the change of the lattice to a two-dimensional lamellar one retaining significant intermolecular contacts only within the ionic bilayers. The comprehensive analysis of the structural and thermodynamic data in the homologous series pointed at the mechanism of the interplay between the structural modification on melting and the induced anomalous change of the magnetic properties. A family of one-dimensional spin-crossover polymers was synthesized and characterized using a series of spectroscopic methods, X-ray powder diffraction, magnetic susceptibility measurements and differential scanning calorimetry. The copper analogue of was also synthesized and its crystal structure solved. In comparison with the mononuclear systems, the polymeric mesogens of iron(II) are less sensitive to the glass transition, which was attributed to the moderate concomitant variation of the structure. Nevertheless, the observed increase of the magnetic hysteresis with lengthening of the alkyl substituents was ascribed to the interplay of the structural reorganization of the coordination core due to spin-crossover with the structural delay in the spatial reorganization of the mesogenic substituents. The classification of mononuclear and polymeric metallomesogens according to the interactions between the structural- and the spin-transition and analysis of the data on the reported spin-crossover metallomesogens led to the separation of three types, namely: Type i: systems with coupling between the electronic structure of the iron(II) ions and the mesomorphic behavior of the substance; Type ii: systems where both transitions coexist in the same temperature region but are not coupled due to competition with the dehydration or due to negligible structural transformation; Type iii: systems where both transitions occur in different temperature regions and therefore are uncoupled. Fine-tuning, in particular regarding the temperature at which the spin-transition occurs with hysteresis properties responsible for the memory effect, are still a major challenge towards practical implementation of spin-crossover materials. A possible answer to the problem could be materials in which the spin-crossover transition is coupled with another transition easily controllable by external stimuli. In the present thesis we have shown the viability of the approach realized in the mesogenic systems with coupled phase- and spin-transitions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Until today, autogenic bone grafts from various donor regions represent the gold standard in the field of bone reconstruction, providing both osteoinductive and osteoconductive characteristics. However, due to low availability and a disequilibrium between supply and demand, the risk of disease transfer and morbidity, usually associated with autogeneic bone grafts, the development of biomimic materials with structural and chemical properties similar to those of natural bone have been extensively studied. So far,rnonly a few synthetic materials, so far, have met these criteria, displaying properties that allow an optimal bone reconstitution. Biosilica is formed enzymatically under physiological-relevant conditions (temperature and pH) via silicatein (silica protein), an enzyme that was isolated from siliceous sponges, cloned, and prepared in a recombinant way, retaining its catalytic activity. It is biocompatible, has some unique mechanical characteristics, and comprises significant osteoinductive activity.rnTo explore the application of biosilica in the fields of regenerative medicine,rnsilicatein was encapsulated, together with its substrate sodium metasilicate, into poly(D,L-lactide)/polyvinylpyrrolidone(PVP)-based microspheres, using w/o/wrnmethodology with solvent casting and termed Poly(D,L-lactide)-silicatein silicacontaining-microspheres [PLASSM]. Both silicatein encapsulation efficiency (40%) and catalytic activity retention upon polymer encapsulation were enhanced by addition of an essential pre-emulsifying step using PVP. Furthermore, the metabolic stability, cytoxicity as well as the kinetics of silicatein release from the PLASSM were studied under biomimetic conditions, using simulated body fluid. As a solid support for PLASSM, a polyvinylpyrrolidone/starch/Na2HPO4-based matrix (termed plastic-like filler matrix containing silicic acid [PMSA]) was developed and its chemical and physical properties determined. Moreover, due to the non-toxicity and bioinactivity of the PMSA, it is suggested that PMSA acts as osteoconductive material. Both components, PLASSM and PMSA, when added together, form arnbifunctional 2-component implant material, that is (i)non-toxic(biocompatible), (ii)moldable, (iii) self-hardening at a controlled and clinically suitable rate to allows a tight insertion into any bone defect (iv) biodegradable, (v)forms a porous material upon exposure to body biomimetic conditions, and (vi)displays both osteoinductive (silicatein)and osteoconductive (PMSA) properties.rnPreliminary in vivo experiments were carried out with rabbit femurs, by creatingrnartificial bone defects that were subsequently treated with the bifunctional 2-component implant material. After 9 weeks of implantation, both computed tomography (CT) and morphological analyses showed complete resorption of the implanted material, concurrent with complete bone regeneration. The given data can be considered as a significant contribution to the successful introduction of biosilica-based implants into the field of bone substitution surgery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The presented thesis revolves around the study of thermally-responsive PNIPAAm-based hydrogels in water/based environments, as studied by Fluorescence Correlation Spectroscopy (FCS).rnThe goal of the project was the engineering of PNIPAAm gels into biosensors. Specifically, a gamma of such gels were both investigated concerning their dynamics and structure at the nanometer scale, and their performance in retaining bound bodies upon thermal collapse (which PNIPAAm undergoes upon heating above 32 ºC).rnFCS’s requirements, as a technique, match the limitations imposed by the system. Namely, the need to intimately probe a system in a solvent, which was also fragile and easy to alter. FCS, on the other hand, both requires a fluid environment to work, and is based on the observation of diffusion of fluorescents at nanomolar concentrations. FCS was applied to probe the hydrogels on the nanometer size with minimal invasivity.rnVariables in the gels were addressed in the project including crosslinking degree; structural changes during thermal collapse; behavior in different buffers; the possibility of decreasing the degree of inhomogeneity; behavior of differently sized probes; and the effectiveness of antibody functionalization upon thermal collapse.rnThe evidenced results included the heightening of structural inhomogeneities during thermal collapse and under different buffer conditions; the use of annealing to decrease the inhomogeneity degree; the use of differently sized probes to address different length scale of the gel; and the successful functionalization before and after collapse.rnThe thesis also addresses two side projects, also carried forward via FCS. One, diffusion in inverse opals, produced a predictive simulation model for diffusion of bodies in confined systems as dependent on the bodies’ size versus the characteristic sizes of the system. The other was the observation of interaction of bodies of opposite charge in a water solution, resulting in a phenomenological theory and an evaluation method for both the average residence time of the different bodies together, and their attachment likelihood.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The application of two low-temperature thermochronometers [fission-track analysis and (U-Th)/He analyses, both on apatite] to various tectonostratigraphic units of the Menderes and Alanya Massifs of Turkey has provided significant new constraints to the understanding of their structural evolution. The Menderes Massif of western Anatolia is one of the largest metamorphic core complexes on Earth. The integration of the geochronometric dataset presented in this dissertation with preexisting ones from the literature delineates three groups of samples within the Menderes Massif. In the northern and southern region the massif experienced a Late Oligocene-Early Miocene tectonic denudation and surface uplift; whereas data from the central region are younger, with most ages ranging between the Middle-Late Miocene. The results of this study are consistent with the interpretation for a symmetric exhumation of the Menderes Massif. The Alanya Massif of SW Anatolia presents a typical nappe pile consisting of thrust sheets with contrasting metamorphic histories. Petrological and geochronological data clearly indicate that the tectonometamorphic evolution Alanya started from Late Cretaceous with the northward subduction of an ‘Alanya ocean’ under the Tauride plate. As an effect of the closure of the İzmir–Ankara–Erzincan ocean, northward backthrusting during the Paleocene-Early Eocene created the present stacking order. Apatite fission-track ages from this study range from 31.8 to 26.8 Ma (Late Rupelian-Early Chattian) and point to a previously unrecognized mid-Oligocene cooling/exhumation episode. (U-Th)/He analysis on zircon crystals obtained from the island of Cyprus evidentiate that the Late Cretaceous trondhjemites of the Troodos Massif not recorded a significant cooling event. Instead results for the Late Triassic turbiditic sandstones of the Vlambouros Formation show that the Mamonia mélange was never buried enough to reach the closure temperature of the ZHe radiometric system (ca. 200°C), thus retaining the Paleozoic signature of a previous sedimentary cycle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Das Silicatein α ist ein 24 kDa großes Enzym, welches im Schwamm Suberites domuncula für die Synthese von Biosilikat verantwortlich ist. Vorhergehende Studien haben gezeigt, dass Silicatein auch die Synthese anderer Metalloxide wie Titandioxid, Galliumoxid und Zirkoniumdioxid katalysieren kann. Diese Fähigkeiten machen das Silicatein α für biomedizinische und biotechnologische Anwendungen interessant, da die Synthese unter nahezu physiologischen Bedingungen ablaufen kann, was die Herstellung neuartiger Kompositmaterialien mit einzigartigen Eigenschaften erleichtern würde. Zur Immobilisierung des Silicatein α auf verschiedenen Oberflächen wurde bislang ein Nickel-NTA-Kopolymer eingesetzt. Diese Art der Immobilisierung bietet eine Reihe von Möglichkeiten in der Nanobiotechnologie, stößt aber in der Biomedizin an ihre Grenzen, da sich nicht alle Oberflächen für ein solches Coating eignen. Zudem können die zur Aktivierung des Polymers nötigen Lösungsmittel und die über die Zeit freigesetzten Monomere aus dem Polymergerüst toxische oder mutagene Wirkung auf das umliegende Gewebe haben. Deshalb wurde das Silicatein α in dieser Arbeit mit zwei Affinitäts-Tags so modifiziert, dass es an verschiedene Oberflächen immobilisiert werden kann und dabei seine Aktivität beibehält. Zuerst wurde das Silicatein mit einem Glu-tag am N-terminalen Ende modifiziert. Dadurch gelang die direkte Immobilisierung an Hydroxyapatit und die folgende, enzymkatalysierte Synthese von Biosilikat-Beschichtungen auf diesem Träger. Die Eigenschaften eines solchen HA-Kompositmaterials können zum Beispiel zu einem verbesserten, schnelleren und stabileren Einwachsen von Knochenimplantaten führen, da Biosilikat die Reifung und Differenzierung von Osteoblasten beschleunigt. rnMit dem an Hydroxyapatit-Plättchen immobilisierten Glu-tag-Silicatein wurde ein modifizierter Pull-down Assay etabliert, wodurch bekannte, aber auch bis dahin noch unbekannte Protein-Interaktionspartner identifiziert werden konnten. rnUm zu zeigen, dass der entwickelte Glu-tag an präformierte, calciumhaltige Oberflächen binden kann, wurden die Nadeln des Kalkschwammes Paraleucilla magna als Modellorganismus verwendet. Die Nadeln konnten durch das immobilisierte Silicatein mit einer Titandioxid-Schicht überzogen werden und unter Verwendung des Interaktionspartners Silintaphin-1 konnte diese Beschichtung noch verstärkt werden. Solche CaCO3-Kompositmaterialien könnten sowohl in der Biomedizin als auch in der Biotechnologie zum Einsatz kommen. Neben den erwähnten calciumhaltigen Materialien finden auch andere Stoffe wie TiO2-Nanodrähte Verwendung in der Forschung. In weiterführenden Experimenten konnte gezeigt werden, dass der entwickelte Glu-tag auch Affinität zu Titandioxid-Oberflächen vermittelt. Auch hier konnte durch das oberflächenimmobilisierte Enzym eine Biosilikatbeschichtung synthetisiert werden. rnMit der zweiten Modifikation - einem Cys-tag - konnte Silicatein direkt auf Goldoberflächen immobilisiert werden. Durch die Verwendung eines Polydimethylsiloxan (PDMS)-Stempels wurde das Cys-getaggte Silicatein in einem linienförmigen Muster auf das Gold übertragen und die Synthese von Titandioxid dort nachgewiesen.rnDie Experimente und Ergebnisse dieser Arbeit haben gezeigt, dass Silicatein α durch einfache Modifikationen an verschiedene Oberflächen immobilisiert werden kann und dabei immer noch seine Aktivität behält. rnHierdurch ergibt sich die Möglichkeit, unter Normalbedingungen verschiedenste Kompositmaterialien herzustellen.rn

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Self-organising pervasive ecosystems of devices are set to become a major vehicle for delivering infrastructure and end-user services. The inherent complexity of such systems poses new challenges to those who want to dominate it by applying the principles of engineering. The recent growth in number and distribution of devices with decent computational and communicational abilities, that suddenly accelerated with the massive diffusion of smartphones and tablets, is delivering a world with a much higher density of devices in space. Also, communication technologies seem to be focussing on short-range device-to-device (P2P) interactions, with technologies such as Bluetooth and Near-Field Communication gaining greater adoption. Locality and situatedness become key to providing the best possible experience to users, and the classic model of a centralised, enormously powerful server gathering and processing data becomes less and less efficient with device density. Accomplishing complex global tasks without a centralised controller responsible of aggregating data, however, is a challenging task. In particular, there is a local-to-global issue that makes the application of engineering principles challenging at least: designing device-local programs that, through interaction, guarantee a certain global service level. In this thesis, we first analyse the state of the art in coordination systems, then motivate the work by describing the main issues of pre-existing tools and practices and identifying the improvements that would benefit the design of such complex software ecosystems. The contribution can be divided in three main branches. First, we introduce a novel simulation toolchain for pervasive ecosystems, designed for allowing good expressiveness still retaining high performance. Second, we leverage existing coordination models and patterns in order to create new spatial structures. Third, we introduce a novel language, based on the existing ``Field Calculus'' and integrated with the aforementioned toolchain, designed to be usable for practical aggregate programming.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ziel der hier vorliegenden Dissertation ist es, Übergangsmetallpivalate durch gezielte Substitution monodentater Donorliganden in apikalen Positionen, unter Erhalt ihrer Grundstruktur, zu höherdimensionalen Verbindungen zu verknüpfen. Als Ausgangs-verbindungen dienen dabei [Fe3O(O2C-tBu)6(OH2)3]O2C-tBu und [Ni2(OH2)(O2C-tBu)4(HO2C-tBu)4].rnrnIm ersten Teil dieser Arbeit konnten, in Abhängigkeit der in den Reaktionen eingesetzten Liganden mit [Fe3O(O2C-tBu)6(OH2)3]O2C-tBu, symmetrisch oder asymmetrisch substituierte dreikernige Verbindungen erhalten werden. Deren strukturellen und magnetischen Eigenschaften konnten untersucht werden und die daraus resultierenden magnetostrukturellen Korrelationen auf die folgenden vorgestellten mehrkernigen bzw. höherdimensionalen Verbindungen übertragen werden, die erheblich an Komplexität zugenommen haben.rnDie 0-dimensionalen dreikernigen Einheiten zeigen, abhängig von ihren Fe-O-Bindungslängen in den µ3-Oxo verbrückten Einheiten, unterschiedlich starke antiferro-magnetische Austauschwechselwirkungen. Wenn in den Verbindungen eine längere Fe-O-Bindung und zwei kürzere Fe-O-Bindungen existieren, können diese Typ 2:a zugeordnet werden. Daraus folgt, dass die Daten der magnetischen Suszeptibilität mit zwei unterschiedlich starken Austauschwechselwirkungen (J-Kopplungen) zu simulieren sind. Es liegen eine stärkere J-Kopplung über die kurzen Fe-O-Bindungen und zwei schwächere über die lange Fe-O-Bindung vor (J1 > J2). Existieren hingegen eine kürzere Fe-O-Bindung und zwei längere Fe-O-Bindungen (Typ 2:b) sind nun die magnetischen Suszeptibilitätsdaten nur mit zwei stärkeren und einer schwächeren Kopplung zu simulieren (J1 < J2). Die vorgestellten Verbindungen zeigen alle einen Spingrundzustand S≠0, der durch konkurrierende Wechselwirkungen der Spinzentren in Dreieckssituationen begründet ist. rnDer zweite Teil der Arbeit beschäftigte sich mit dem gezielten Aufbau mehrkerniger Verbindungen, in denen die dreikernige Einheit als Grundmotiv erhalten bleiben konnte. Die Austauschwechselwirkungen der fünf- und sechskernigen Verbindungen konnten in Abhängigkeit der Bindungslängen und basierend auf den Ergebnissen der dreikernigen Einheiten aus dem ersten Teil, bestimmt werden. rnDie Synthesen der 4-Hydroxybenzaldehyd verbrückten Kettenverbindung sowie des über 3,5,3’,5’-Tetramethyl-1H,1’H-[4,4’]bipyrazolyl verknüpften 3-dimensionalen Nickelnetzwerks zeigten die erfolgreiche Umsetzung des „Bottom Up“ Ansatzes. Durch Erhaltung des jeweiligen Grundmotivs der verwendeten Ausgangsverbindung konnten die magnetischen Austauschwechselwirkungen unter Einbeziehung schwacher Wechselwirkungen durch den Raum, mit Hilfe der Theta-Weiss Temperatur, in den Simulationen bestimmt werden.rnrnDamit stellt der „Bottom Up“ Ansatz eine hervorragende Syntesestrategie für den Aufbau höherdimensionaler Verbindungen, ausgehend von zwei- bzw. dreikernigen Übergangs-metallkomplexen, dar.rn

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pyrene derivatives as donors and acceptorsrnrnAlmost 200 years have passed since pyrene was first discovered, and to this day it garners unbroken interest by chemists around the world. One of the most fascinating areas of pyrene chemistry is its selective functionalization, since it is still currently a challenge to specifically functionalize different positions on the molecule.[1]rnIn this work, two new patterns of pyrene substitution have been developed. Under suitable conditions, a fourfold bromination of 4,5,9,10 tetramethoxypyrene is possible to yield eightfold functionalized pyrenes. Based on these molecules a novel series of 1,3,4,5,6,8,9,10-substituted pyrene derivatives was achieved. Synthetic approaches to a non-quinoidal, strong pyrene-4,5,9,10-tetraone based acceptor have been discussed. It emerged that the chosen synthetic approach is suitable for intermediate acceptors, yet it failed very electron deficient pyrene derivatives. Donors based on 4,5,9,10-tetramethoxypyrene (2,7- and 1,3,6,8-substitued) have been prepared and studied as CT complexes. In the SFB/TR 49 these complexes were analyzed in the solid state. For the first time charge transfer in a non-TTF CT-complex was studied by HAXPES and NEXAFS.rnBased on the works of ZÖPHEL et al.[2] it was possible to obtain an asymmetric 4,9,10 substituted pyrene derivative. This was used as a building block to prepare a non-planar acceptor molecule as well as electron-rich rylene-type molecules. rnFinally, two separate series of molecules intended as emitters for OLEDs were presented. Thermally activated delayed fluorescence (TADF) in OLEDs attracted significant academic interest as it is considered a promising approach to improve the efficiency of fluorescent OLEDs.[3] Our molecules were designed to have a deep blue emission spectrum and a minimal singlet triplet energy gap (∆ES1->T1) while retaining a high fluorescence quantum yield ϕPL. The initial OD series has a small ∆ES1->T1, yet had an insufficient ϕPL for the use in OLEDs. The Py series emitters, in contrast, combine both desired properties and were successfully implemented in efficient OLED devices.rn[1]. T. M. Figueira-Duarte and K. Müllen, Chem. Rev., 2011, 111, 7260-7314.rn[2]. L. Zöphel, V. Enkelmann and K. Müllen, Org. Lett., 2013, 15, 804-807.rn[3]. H. Uoyama, K. Goushi, K. Shizu, H. Nomura and C. Adachi, Nature, 2012, 492, 234-238.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The intervertebral disc (IVD) is the joint of the spine connecting vertebra to vertebra. It functions to transmit loading of the spine and give flexibility to the spine. It composes of three compartments: the innermost nucleus pulposus (NP) encompassing by the annulus fibrosus (AF), and two cartilaginous endplates connecting the NP and AF to the vertebral body on both sides. Discogenic pain possibly caused by degenerative intervertebral disc disease (DDD) and disc herniations has been identified as a major problem in our modern society. To study possible mechanisms of IVD degeneration, in vitro organ culture systems with live disc cells are highly appealing. The in vitro culture of intact bovine coccygeal IVDs has advanced to a relevant model system, which allows the study of mechano-biological aspects in a well-controlled physiological and mechanical environment. Bovine tail IVDs can be obtained relatively easy in higher numbers and are very similar to the human lumbar IVDs with respect to cell density, cell population and dimensions. However, previous bovine caudal IVD harvesting techniques retaining cartilaginous endplates and bony endplates failed after 1-2 days of culture since the nutrition pathways were obviously blocked by clotted blood. IVDs are the biggest avascular organs, thus, the nutrients to the cells in the NP are solely dependent on diffusion via the capillary buds from the adjacent vertebral body. Presence of bone debris and clotted blood on the endplate surfaces can hinder nutrient diffusion into the center of the disc and compromise cell viability. Our group established a relatively quick protocol to "crack"-out the IVDs from the tail with a low risk for contamination. We are able to permeabilize the freshly-cut bony endplate surfaces by using a surgical jet lavage system, which removes the blood clots and cutting debris and very efficiently reopens the nutrition diffusion pathway to the center of the IVD. The presence of growth plates on both sides of the vertebral bone has to be avoided and to be removed prior to culture. In this video, we outline the crucial steps during preparation and demonstrate the key to a successful organ culture maintaining high cell viability for 14 days under free swelling culture. The culture time could be extended when appropriate mechanical environment can be maintained by using mechanical loading bioreactor. The technique demonstrated here can be extended to other animal species such as porcine, ovine and leporine caudal and lumbar IVD isolation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Canine distemper virus (CDV) causes in dogs a severe systemic infection, with a high frequency of demyelinating encephalitis. Among the six genes transcribed by CDV, the P gene encodes the polymerase cofactor protein (P) as well as two additional nonstructural proteins, C and V; of these V was shown to act as a virulence factor. We investigated the molecular mechanisms by which the P gene products of the neurovirulent CDV A75/17 strain disrupt type I interferon (IFN-alpha/beta)-induced signaling that results in the establishment of the antiviral state. Using recombinant knockout A75/17 viruses, the V protein was identified as the main antagonist of IFN-alpha/beta-mediated signaling. Importantly, immunofluorescence analysis illustrated that the inhibition of IFN-alpha/beta-mediated signaling correlated with impaired STAT1/STAT2 nuclear import, whereas the phosphorylation state of these proteins was not affected. Coimmunoprecipitation assays identified the N-terminal region of V (VNT) responsible for STAT1 targeting, which correlated with its ability to inhibit the activity of the IFN-alpha/beta-mediated antiviral state. Conversely, while the C-terminal domain of V (VCT) could not function autonomously, when fused to VNT it optimally interacted with STAT2 and subsequently efficiently suppressed the IFN-alpha/beta-mediated signaling pathway. The latter result was further supported by a single mutation at position 110 within the VNT domain of CDV V protein, resulting in a mutant that lost STAT1 binding while retaining a partial STAT2 association. Taken together, our results identified the CDV VNT and VCT as two essential modules that complement each other to interfere with the antiviral state induced by IFN-alpha/beta-mediated signaling. Hence, our experiments reveal a novel mechanism of IFN-alpha/beta evasion among the morbilliviruses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Click chemistry is a powerful technology for the functionalization of therapeutic proteins with effector moieties, because of its potential for bio-orthogonal, regio-selective, and high-yielding conjugation under mild conditions. Designed Ankyrin Repeat Proteins (DARPins), a novel class of highly stable binding proteins, are particularly well suited for the introduction of clickable methionine surrogates such as azidohomoalanine (Aha) or homopropargylglycine (Hpg), since the DARPin scaffold can be made methionine-free by an M34L mutation in the N-cap which fully maintains the biophysical properties of the protein. A single N-terminal azidohomoalanine, replacing the initiator Met, is incorporated in high yield, and allows preparation of "clickable" DARPins at about 30 mg per liter E. coli culture, fully retaining stability, specificity, and affinity. For a second modification, we introduced a cysteine at the C-terminus. Such DARPins could be conveniently site-specifically linked to two moieties, polyethylene glycol (PEG) to the N-terminus and the fluorophore Alexa488 to the C-terminus. We present a DARPin selected against the epithelial cell adhesion molecule (EpCAM) with excellent properties for tumor targeting as an example. We used these doubly modified molecules to measure binding kinetics on tumor cells and found that PEGylation has no effect on dissociation rate, but slightly decreases the association rate and the maximal number of cell-bound DARPins, fully consistent with our previous model of PEG action obtained in vitro. Our data demonstrate the benefit of click chemistry for site-specific modification of binding proteins like DARPins to conveniently add several functional moieties simultaneously for various biomedical applications.