954 resultados para Power sensitivity model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a statistical methodology for leakage power estimation, due to subthreshold and gate tunneling leakage, in the presence of process variations, for 65 nm CMOS. The circuit leakage power variations is analyzed by Monte Carlo (MC) simulations, by characterizing NAND gate library. A statistical “hybrid model” is proposed, to extend this methodology to a generic library. We demonstrate that hybrid model based statistical design results in up to 95% improvement in the prediction of worst to best corner leakage spread, with an error of less than 0.5%, with respect to worst case design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a dense, ad hoc wireless network confined to a small region, such that direct communication is possible between any pair of nodes. The physical communication model is that a receiver decodes the signal from a single transmitter, while treating all other signals as interference. Data packets are sent between source-destination pairs by multihop relaying. We assume that nodes self-organise into a multihop network such that all hops are of length d meters, where d is a design parameter. There is a contention based multiaccess scheme, and it is assumed that every node always has data to send, either originated from it or a transit packet (saturation assumption). In this scenario, we seek to maximize a measure of the transport capacity of the network (measured in bit-meters per second) over power controls (in a fading environment) and over the hop distance d, subject to an average power constraint. We first argue that for a dense collection of nodes confined to a small region, single cell operation is efficient for single user decoding transceivers. Then, operating the dense ad hoc network (described above) as a single cell, we study the optimal hop length and power control that maximizes the transport capacity for a given network power constraint. More specifically, for a fading channel and for a fixed transmission time strategy (akin to the IEEE 802.11 TXOP), we find that there exists an intrinsic aggregate bit rate (Thetaopt bits per second, depending on the contention mechanism and the channel fading characteristics) carried by the network, when operating at the optimal hop length and power control. The optimal transport capacity is of the form dopt(Pmacrt) x Thetaopt with dopt scaling as Pmacrt 1 /eta, where Pmacrt is the available time average transmit power and eta is the path loss exponent. Under certain conditions on the fading distribution, we then pro- - vide a simple characterisation of the optimal operating point.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The soft switching converters evolved through the resonant load, resonant switch, resonant transition and active clamp converters to eliminate switching losses in power converters. This paper briefly presents the operating principle of the new family of soft transition converters; the methodology of design of these converters is presented through an example. In the proposed family of converters, the switching transitions of both the main switch and auxiliary switch are lossless.When these converters are analysed in terms of the pole current and throw voltage, the defining equations of all converters belonging to this family become identical.Such a description allows one to define simple circuit oriented model for these converters. These circuit models help in evaluating the steady state and dynamic model of these converters. The standard dynamic performance functions of the converters are readily obtainable from this model. This paper presents these dynamic models and verifies the same through measurements on a prototype converter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The soft switching converters evolved through the resonant load, resonant switch, resonant transition and active clamp converters to eliminate switching losses in power converters. This paper briefly presents the operating principle of the new family of soft transition converters; the methodology of design of these converters is presented through an example. In the proposed family of converters, the switching transitions of both the main switch and auxiliary switch are lossless. When these converters are analysed in terms of the pole current and throw voltage, the defining equations of all converters belonging to this family become identical.Such a description allows one to define simple circuit oriented model for these converters. These circuit models help in evaluating the steady state and dynamic model of these converters. The standard dynamic performance functions of the converters are readily obtainable from this model. This paper presents these dynamic models and verifies the same through measurements on a prototype converter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is focused on the development of a model for predicting the mean drop size in effervescent sprays. A combinatorial approach is followed in this modeling scheme, which is based on energy and entropy principles. The model is implemented in cascade in order to take primary breakup (due to exploding gas bubbles) and secondary breakup (due to shearing action of surrounding medium) into account. The approach in this methodology is to obtain the most probable drop size distribution by maximizing the entropy while satisfying the constraints of mass and energy balance. The comparison of the model predictions with the past experimental data is presented for validation. A careful experimental study is conducted over a wide range of gas-to-liquid ratios, which shows a good agreement with the model predictions: It is observed that the model gives accurate results in bubbly and annular flow regimes. However, discrepancies are observed in the transitional slug flow regime of the atomizer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a spin model, namely, the Kitaev model augmented by a loop term and perturbed by an Ising Hamiltonian, and show that it exhibits both confinement-deconfinement transitions from spin liquid to antiferromagnetic/spin-chain/ferromagnetic phases and topological quantum phase transitions between gapped and gapless spin-liquid phases. We develop a fermionic resonating-valence-bonds (RVB) mean-field theory to chart out the phase diagram of the model and estimate the stability of its spin-liquid phases, which might be relevant for attempts to realize the model in optical lattices and other spin systems. We present an analytical mean-field theory to study the confinement-deconfinement transition for large coefficient of the loop term and show that this transition is first order within such mean-field analysis in this limit. We also conjecture that in some other regimes, the confinement-deconfinement transitions in the model, predicted to be first order within the mean-field theory, may become second order via a defect condensation mechanism. Finally, we present a general classification of the perturbations to the Kitaev model on the basis of their effect on it's spin correlation functions and derive a necessary and sufficient condition, within the regime of validity of perturbation theory, for the spin correlators to exhibit a long-ranged power-law behavior in the presence of such perturbations. Our results reproduce those of Tikhonov et al. [Phys. Rev. Lett. 106, 067203 (2011)] as a special case.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an approach for identifying the faulted line section and fault location on transmission systems using support vector machines (SVMs) for diagnosis/post-fault analysis purpose. Power system disturbances are often caused by faults on transmission lines. When fault occurs on a transmission system, the protective relay detects the fault and initiates the tripping operation, which isolates the affected part from the rest of the power system. Based on the fault section identified, rapid and corrective restoration procedures can thus be taken to minimize the power interruption and limit the impact of outage on the system. The approach is particularly important for post-fault diagnosis of any mal-operation of relays following a disturbance in the neighboring line connected to the same substation. This may help in improving the fault monitoring/diagnosis process, thus assuring secure operation of the power systems. In this paper we compare SVMs with radial basis function neural networks (RBFNN) in data sets corresponding to different faults on a transmission system. Classification and regression accuracy is reported for both strategies. Studies on a practical 24-Bus equivalent EHV transmission system of the Indian Southern region is presented for indicating the improved generalization with the large margin classifiers in enhancing the efficacy of the chosen model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the emergence of voltage scaling as one of the most powerful power reduction techniques, it has been important to support voltage scalable statistical static timing analysis (SSTA) in deep submicrometer process nodes. In this paper, we propose a single delay model of logic gate using neural network which comprehensively captures process, voltage, and temperature variation along with input slew and output load. The number of simulation programs with integrated circuit emphasis (SPICE) required to create this model over a large voltage and temperature range is found to be modest and 4x less than that required for a conventional table-based approach with comparable accuracy. We show how the model can be used to derive sensitivities required for linear SSTA for an arbitrary voltage and temperature. Our experimentation on ISCAS 85 benchmarks across a voltage range of 0.9-1.1V shows that the average error in mean delay is less than 1.08% and average error in standard deviation is less than 2.85%. The errors in predicting the 99% and 1% probability point are 1.31% and 1%, respectively, with respect to SPICE. The two potential applications of voltage-aware SSTA have been presented, i.e., one for improving the accuracy of timing analysis by considering instance-specific voltage drops in power grids and the other for determining optimum supply voltage for target yield for dynamic voltage scaling applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper reports the operational experience from a 100 kWe gasification power plant connected to the grid in Karnataka. Biomass Energy for Rural India (BERI) is a program that implemented gasification based power generation with an installed capacity of 0.88 MWe distributed over three locations to meet the electrical energy needs in the district of Tumkur. The operation of one 100 kWe power plant was found unsatisfactory and not meeting the designed performance. The Indian Institute of Science, Bangalore, the technology developer, took the initiative to ensure the system operation, capacity building and prove the designed performance. The power plant connected to the grid consists of the IISc gasification system which includes reactor, cooling, cleaning system, fuel drier and water treatment system to meet the producer gas quality for an engine. The producer gas is used as a fuel in Cummins India Limited, GTA 855 G model, turbo charged engine and the power output is connected to the grid. The system has operated for over 1000 continuous hours, with only about 70 h of grid outages. The total biomass consumption for 1035 h of operation was 111 t at an average of 107 kg/h. Total energy generated was 80.6 MWh reducing over loot of CO(2) emissions. The overall specific fuel consumption was about 1.36 kg/kWh, amounting to an overall efficiency from biomass to electricity of about 18%. The present operations indicate that a maintenance schedule for the plant can be at the end of 1000 h. The results for another 1000 h of operation by the local team are also presented. (C) 2011 International Energy Initiative. Published by Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the scaling behavior of the fidelity (F) in the thermodynamic limit using the examples of a system of Dirac fermions in one dimension and the Kitaev model on a honeycomb lattice. We show that the thermodynamic fidelity inside the gapless as well as gapped phases follow power-law scalings, with the power given by some of the critical exponents of the system. The generic scaling forms of F for an anisotropic quantum critical point for both the thermodynamic and nonthermodynamic limits have been derived and verified for the Kitaev model. The interesting scaling behavior of F inside the gapless phase of the Kitaev model is also discussed. Finally, we consider a rotation of each spin in the Kitaev model around the z axis and calculate F through the overlap between the ground states for the angle of rotation eta and eta + d eta, respectively. We thereby show that the associated geometric phase vanishes. We have supplemented our analytical calculations with numerical simulations wherever necessary.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the scaling behavior of the fidelity (F) in the thermodynamic limit using the examples of a system of Dirac fermions in one dimension and the Kitaev model on a honeycomb lattice.We show that the thermodynamic fidelity inside the gapless as well as gapped phases follow power-law scalings, with the power given by some of the critical exponents of the system. The generic scaling forms of F for an anisotropic quantum critical point for both the thermodynamic and nonthermodynamic limits have been derived and verified for the Kitaev model. The interesting scaling behavior of F inside the gapless phase of the Kitaev model is also discussed. Finally, we consider a rotation of each spin in the Kitaev model around the z axis and calculate F through the overlap between the ground states for the angle of rotation η and η + dη, respectively. We thereby show that the associated geometric phase vanishes. We have supplemented our analytical calculations with numerical simulations wherever necessary

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study presents a novel magnetic arm-switch-based integrated magnetic circuit for a three-phase series-shunt compensated uninterruptible power supply (UPS). The magnetic circuit acts as a common interacting field for a number of energy ports, viz., series inverter, shunt inverter, grid and load. The magnetic arm-switching technique ensures equivalent series or shunt connection between the inverters. In normal grid mode (stabiliser mode), the series inverter is used for series voltage correction and the shunt one for current correction. The inverters and the load are effectively connected in parallel when the grid power is not available. These inverters are then used to share the load power. The operation of the inverters in parallel is ensured by the magnetic arm-switching technique. This study also includes modelling of the magnetic circuit. A graphical technique called bond graph is used to model the system. In this model, the magnetic circuit is represented in terms of gyrator-capacitors. Therefore the model is also termed as gyrator-capacitor model. The model is used to extract the dynamic equations that are used to simulate the system using MATLAB/SIMULINK. This study also discusses a synchronously rotating reference frame-based control technique that is used for the control of the series and shunt inverters in different operating modes. Finally, the gyrator-capacitor model is validated by comparing the simulated and experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a method for minimizing the sum of the square of voltage deviations by a least-square minimization technique, and thus improving the voltage profile in a given system by adjusting control variables, such as tap position of transformers, reactive power injection of VAR sources and generator excitations. The control variables and dependent variables are related by a matrix J whose elements are computed as the sensitivity matrix. Linear programming is used to calculate voltage increments that minimize transmission losses. The active and reactive power optimization sub-problems are solved separately taking advantage of the loose coupling between the two problems. The proposed algorithm is applied to IEEE 14-and 30-bus systems and numerical results are presented. The method is computationally fast and promises to be suitable for implementation in real-time dispatch centres.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of a neural network based power system damping controller (PSDC) for a static VAr compensator (SVC), designed to enhance the damping characteristics of a power system network representing a part of the Electricity Generating Authority of Thailand (EGAT) system is presented. The proposed stabilising controller scheme of the SVC consists of a neuro-identifier and a neuro-controller which have been developed based on a functional link network (FLN) model. A recursive online training algorithm has been utilised to train the two networks. The simulation results have been obtained under various operating conditions and disturbance cases to show that the proposed stabilising controller can provide a better damping to the low frequency oscillations, as compared to the conventional controllers. The effectiveness of the proposed stabilising controller has also been compared with a conventional power system stabiliser provided in the generator excitation system

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of a neural network based power system damping controller (PSDC) for a static Var compensator (SVC), designed to enhance the damping characteristics of a power system network representing a part of the Electricity Generating Authority of Thailand (EGAT) system is presented. The proposed stabilising controller scheme of the SVC consists of a neuro-identifier and a neuro-controller which have been developed based on a functional link network (FLN) model. A recursive online training algorithm has been utilised to train the two networks. The simulation results have been obtained under various operating conditions and disturbance cases to show that the proposed stabilising controller can provide a better damping to the low frequency oscillations, as compared to the conventional controllers. The effectiveness of the proposed stabilising controller has also been compared with a conventional power system stabiliser provided in the generator excitation system.