990 resultados para Phospholipase C-b
Resumo:
PURPOSE: The purpose of this work was to demonstrate the normal ligamentous and tendinous anatomy of the intermetacarpal (IMC) and common carpometacarpal (CCMC) joints with MRI and MR arthrography. METHOD: MR images of 22 wrists derived from fresh human cadavers were obtained before and after arthrography. The MR imaging features of the ligaments and tendons about the CCMC and IMC joints and the joints themselves were analyzed in a randomized fashion and correlated with those seen on anatomic sections. RESULTS: Six CCMC ligaments were visualized. The dorsal and palmar CCMC ligaments and the pisometacarpal ligament were best visualized in the sagittal plane. The radial and ulnar CCMC collateral ligaments and the capito-third metacarpal ligament were best visualized in the coronal plane. Three main IMC ligaments were observed: a dorsal and a palmar ligament and an interosseous ligament complex. All three ligaments were best visualized in the axial plane. Four tendinous insertions to the metacarpal bases were evident. CONCLUSION: The anatomy of the ligaments and tendinous insertions about the second to fifth IMC and the CCMC joints is well demonstrated by MR imaging and MR arthrography. MR arthrography does not significantly improve the visualization of these complex structures.
Resumo:
The evolution of altruism is a fundamental and enduring puzzle in biology. In a seminal paper Hamilton showed that altruism can be selected for when rb - c > 0, where c is the fitness cost to the altruist, b is the fitness benefit to the beneficiary, and r is their genetic relatedness. While many studies have provided qualitative support for Hamilton's rule, quantitative tests have not yet been possible due to the difficulty of quantifying the costs and benefits of helping acts. Here we use a simulated system of foraging robots to experimentally manipulate the costs and benefits of helping and determine the conditions under which altruism evolves. By conducting experimental evolution over hundreds of generations of selection in populations with different c/b ratios, we show that Hamilton's rule always accurately predicts the minimum relatedness necessary for altruism to evolve. This high accuracy is remarkable given the presence of pleiotropic and epistatic effects as well as mutations with strong effects on behavior and fitness (effects not directly taken into account in Hamilton's original 1964 rule). In addition to providing the first quantitative test of Hamilton's rule in a system with a complex mapping between genotype and phenotype, these experiments demonstrate the wide applicability of kin selection theory.
Resumo:
CYP2D6 is involved in the O-demethylation metabolic pathway of venlafaxine in humans. In this study, we investigated whether this isozyme is stereoselective. Plasma samples from seven CYP2D6 extensive metabolizers (EMs) and five CYP2D6 poor metabolizers (PMs), collected during a period without and with coadministration of quinidine, were analysed. Subjects were administered venlafaxine hydrochloride 18.75 mg orally every 12 h for 48 h on two occasions (1 week apart); once alone and once during the concomitant administration of quinidine sulphate every 12 h. Blood and urine samples were collected under steady-state conditions over one dosing interval (12 h). The present results show that, although CYP2D6 catalyses the O-demethylation of both enantiomers of venlafaxine, it displays a marked stereoselectivity towards the (R)-enantiomer. The oral clearance of (R)-venlafaxine was found to be nine-fold higher in EMs compared to PMs [median (range) 173 (29-611) l/h versus 20 (16-24) l/h, P < 0.005], while it was two-fold higher for (S)-venlafaxine [73 (32-130) l/h versus 37 (21-44) l/h, P < 0.05]. In EMs, quinidine decreased (R)- and (S)-venlafaxine oral clearance by 12-fold ( 0.05) and four-fold ( 0.05), respectively. In contrast, quinidine did not have any effects on renal clearance of (R)-venlafaxine [4 (2-10) l/h for venlafaxine alone versus 5 (0.6-7) l/h for venlafaxine + quinidine] and of (S)-venlafaxine [4 (1-7) l/h for venlafaxine alone versus 3 (0.4-6) l/h for venlafaxine + quinidine]. The coadministration of quinidine to EMs resulted in an almost complete inhibition of the partial metabolic clearance of (R)-venlafaxine to O-demethylated metabolites [127 (10-493) l/h down to 1 (0.1-3) l/h, 0.05], while a seven-fold reduction was measured for (S)-venlafaxine [47 (14-94) l/h versus 7 (1-19) l/h, 0.05]. In PMs, coadministration of quinidine did not significantly change oral clearance and partial metabolic clearance of (R)- and (S)-venlafaxine to its various metabolites. In contrast, data obtained on the partial metabolic clearance of (R)- and (S)-venlafaxine to N-demethylated metabolites, a reaction which is mediated by CYP3A4, suggest a lack of stereoselectivity of this enzyme.
Resumo:
The prevalence of hypertension in African Americans (AAs) is higher than in other US groups; yet, few have performed genome-wide association studies (GWASs) in AA. Among people of European descent, GWASs have identified genetic variants at 13 loci that are associated with blood pressure. It is unknown if these variants confer susceptibility in people of African ancestry. Here, we examined genome-wide and candidate gene associations with systolic blood pressure (SBP) and diastolic blood pressure (DBP) using the Candidate Gene Association Resource (CARe) consortium consisting of 8591 AAs. Genotypes included genome-wide single-nucleotide polymorphism (SNP) data utilizing the Affymetrix 6.0 array with imputation to 2.5 million HapMap SNPs and candidate gene SNP data utilizing a 50K cardiovascular gene-centric array (ITMAT-Broad-CARe [IBC] array). For Affymetrix data, the strongest signal for DBP was rs10474346 (P= 3.6 × 10(-8)) located near GPR98 and ARRDC3. For SBP, the strongest signal was rs2258119 in C21orf91 (P= 4.7 × 10(-8)). The top IBC association for SBP was rs2012318 (P= 6.4 × 10(-6)) near SLC25A42 and for DBP was rs2523586 (P= 1.3 × 10(-6)) near HLA-B. None of the top variants replicated in additional AA (n = 11 882) or European-American (n = 69 899) cohorts. We replicated previously reported European-American blood pressure SNPs in our AA samples (SH2B3, P= 0.009; TBX3-TBX5, P= 0.03; and CSK-ULK3, P= 0.0004). These genetic loci represent the best evidence of genetic influences on SBP and DBP in AAs to date. More broadly, this work supports that notion that blood pressure among AAs is a trait with genetic underpinnings but also with significant complexity.
Resumo:
BACKGROUND: (S)-Methadone, metabolized mainly by CYP2B6, shows a wide interindividual variability in its pharmacokinetics and pharmacodynamics. METHODS: Resequencing of the CYP2B6 gene was performed in 12 and 35 selected individuals with high (S)-methadone plasma exposure and low (S)-methadone plasma exposure, respectively, from a previously described cohort of 276 patients undergoing methadone maintenance treatment. Selected genetic polymorphisms were then analyzed in the complete cohort. RESULTS: The rs35303484 (*11; c136A>G; M46V) polymorphism was overrepresented in the high (S)-methadone level group, whereas the rs3745274 (*9; c516G>T; Q172H), rs2279344 (c822+183G>A), and rs8192719 (c1294+53C>T) polymorphisms were underrepresented in the low (S)-methadone level group, suggesting an association with decreased CYP2B6 activity. Conversely, the rs3211371 (*5; c1459C>T; R487C) polymorphism was overrepresented in the low-level group, indicating an increased CYP2B6 activity. A higher allele frequency was found in the high-level group compared with the low-level group for rs3745274 (*9; c516G>T; Q172H), rs2279343 (*4; c785A>G; K262R) (together representing CYP2B6*6), rs8192719 (c1294+53C>T), and rs2279344 (c822+183G>A), suggesting their involvement in decreased CYP2B6 activity. These results should be replicated in larger independent cohorts. CONCLUSION: Known genetic polymorphisms in CYP2B6 contribute toward explaining extreme (S)-methadone plasma levels observed in a cohort of patients following methadone maintenance treatment.
Resumo:
As for other drugs, there is a large interindividual variability of the plasma concentrations of antidepressants for a given dose. Within the last 2 decades, a very large number of pharmacogenetic studies have made it possible to understand the importance of genetic factors on the disposition of drugs in the organism, many of them at the levels of drug metabolism. Polymorphism of CYP2D6 and of other drug-metabolizing enzymes may thus lead to very large differences in drug exposure between patients and possibly also to toxicity or ineffective drug concentrations in some subjects. In consequence, dose recommendations of antidepressants based on genotypes, justified by the principle of administering bioequivalent individualized drug doses, are now proposed. However, blood (and thus possibly brain) concentrations also depend on other factors than the genetic makeup of the patients. Therapeutic drug monitoring of antidepressants allows us to take into account the influence of factors such as comedications, diet, smoking habit, impaired organ function, and compliance. Therapeutic drug monitoring and genotyping are thus complementary, and their combined use contributes to improve pharmacotherapy with antidepressants and other drugs.
Resumo:
Machado-Joseph disease is the most frequently found dominantly-inherited cerebellar ataxia. Over-repetition of a CAG trinucleotide in the MJD1 gene translates into a polyglutamine tract within the ataxin 3 protein, which upon proteolysis may trigger Machado-Joseph disease. We investigated the role of calpains in the generation of toxic ataxin 3 fragments and pathogenesis of Machado-Joseph disease. For this purpose, we inhibited calpain activity in mouse models of Machado-Joseph disease by overexpressing the endogenous calpain-inhibitor calpastatin. Calpain blockage reduced the size and number of mutant ataxin 3 inclusions, neuronal dysfunction and neurodegeneration. By reducing fragmentation of ataxin 3, calpastatin overexpression modified the subcellular localization of mutant ataxin 3 restraining the protein in the cytoplasm, reducing aggregation and nuclear toxicity and overcoming calpastatin depletion observed upon mutant ataxin 3 expression. Our findings are the first in vivo proof that mutant ataxin 3 proteolysis by calpains mediates its translocation to the nucleus, aggregation and toxicity and that inhibition of calpains may provide an effective therapy for Machado-Joseph disease.
Resumo:
BACKGROUND AND PURPOSE: The major drug-metabolizing enzymes for the oxidation of oxycodone are CYP2D6 and CYP3A. A high interindividual variability in the activity of these enzymes because of genetic polymorphisms and/or drug-drug interactions is well established. The possible role of an active metabolite in the pharmacodynamics of oxycodone has been questioned and the importance of CYP3A-mediated effects on the pharmacokinetics and pharmacodynamics of oxycodone has been poorly explored. EXPERIMENTAL APPROACH: We conducted a randomized crossover (five arms) double-blind placebo-controlled study in 10 healthy volunteers genotyped for CYP2D6. Oral oxycodone (0.2 mg x kg(-1)) was given alone or after inhibition of CYP2D6 (with quinidine) and/or of CYP3A (with ketoconazole). Experimental pain (cold pressor test, electrical stimulation, thermode), pupil size, psychomotor effects and toxicity were assessed. KEY RESULTS: CYP2D6 activity was correlated with oxycodone experimental pain assessment. CYP2D6 ultra-rapid metabolizers experienced increased pharmacodynamic effects, whereas cold pressor test and pupil size were unchanged in CYP2D6 poor metabolizers, relative to extensive metabolizers. CYP2D6 blockade reduced subjective pain threshold (SPT) for oxycodone by 30% and the response was similar to placebo. CYP3A4 blockade had a major effect on all pharmacodynamic assessments and SPT increased by 15%. Oxymorphone C(max) was correlated with SPT assessment (rho(S)= 0.7) and the only independent positive predictor of SPT. Side-effects were observed after CYP3A4 blockade and/or in CYP2D6 ultra-rapid metabolizers. CONCLUSIONS AND IMPLICATIONS: The modulation of CYP2D6 and CYP3A activities had clear effects on oxycodone pharmacodynamics and these effects were dependent on CYP2D6 genetic polymorphism.
Resumo:
The ring sulfoxidation of thioridazine (THD), a widely used neuroleptic agent, yields two diastereoisomeric pairs, fast- and slow-eluting (FE and SE) thioridazine 5-sulfoxide (THD 5-SO). Until now, studies in which concentrations of these metabolites were measured in THD-treated patients have revealed no significant differences in their concentrations. Preliminary experiments in our laboratory had shown that sunlight and, to a lesser extent, dim daylight led to racemization and probably also to photolysis of the diastereoisomeric pairs as measured by high-performance liquid chromatography. Similar results were also obtained with direct UV light (UV lamp). In appropriate light-protected conditions, THD, northioridazine, mesoridazine, sulforidazine, and FE and SE THD 5-SO were measured in 11 patients treated with various doses of THD for at least 1 week. Significantly higher concentrations of the FE stereoisomeric pair were found. The concentration ratios THD 5-SO (FE)/THD 5-SO (SE) ranged from 0.89 to 1.75 in plasma and from 1.15 to 2.05 in urine. Because it is known that the ring sulfoxide contributes to the cardiotoxicity of the drug even more potently than the parent compound does, these results justify further studies to determine whether there is stereoselectivity in the cardiotoxicity of THD 5-SO.
Resumo:
Este artículo hace referencia al cambio ocumdo en la hermenéutica de la filosofía política lockeana en los últimos treinta años y al modo en que la introducción y el estudio del llamado lenguaje del lenguaje del republicanismo clásico ha supuesto un giro importante en la historia de las relaciones entre John Locke y el liberalismo. Se presenta, entonces, como una interpretación de las interpretaciones. Sigue el nacimiento y desarrollo de la llamada interpretación tradicional, que culmina en el individualismo posesivo de C. B. Macpherson, y pasa revista después a la obra de sus críticos, relacionando tres temas: El Segundo Tratado, la tradición republicana y la ilustración británica. Como se podría esperar, se acaba con una invitación a la lectura de los textos originales, lo únicoque todas las interpretaciones tienen en común.
Resumo:
PURPOSE: To describe the weight gain-related side-effects of psychotropic drugs and their consequences on metabolic complications (hypercholesterolemia, obesity) in a Swiss cohort of psychiatric patients. METHOD: This cross-sectional observational study was performed in an out-patient psychiatric division with patients having received for more than 3 months the following drugs: clozapine, olanzapine, quetiapine, risperidone, lithium, and/or valproate. Clinical measures and lifestyle information (smoking behaviour, physical activity) were recorded. RESULTS: 196 inclusions were completed. Weight gain (≥10% of initial weight) following drug treatment was reported in 47% of these patients. Prevalence of obesity (BMI ≥ 30), hypercholesterolemia (≥6.2 mmol/L) and low HDL-cholesterol (<1.0 mmol/L in men, <1.3 mmol/L in women) were present in 38%, 21%, and 27% of patients, respectively. A higher standardised dose, an increase of appetite following medication introduction, the type of medication (clozapine or olanzapine > quetiapine or risperidone > lithium or valproate), and the gender were shown to be significantly associated with evolution of BMI. CONCLUSION: High prevalence of obesity and hypercholesterolemia was found in an out-patient psychiatric population and confirms drug-induced weight gain complications during long-term treatment. The results support the recently published recommendations of monitoring of metabolic side-effects during treatment with atypical antipsychotics. Moreover, the weight gain predictors found in the present study could help to highlight patients with special health care management requirement.