895 resultados para Parametric urbanism
Resumo:
The use of cold-formed steel members as structural columns and beams in residential, industrial and commercial buildings has increased significantly in recent times. This study is focused on the use of cold-formed steel sections as flexural members subject to lateral-torsional buckling. For this purpose a finite element model of a simply supported lipped channel beam under uniform bending was developed, validated using available numerical and experimental results, and used in a detailed parametric study. The moment capacity results were then compared with the predictions from the current ambient temperature design rules in the cold-formed steel structures codes of Australia, New Zealand, North America and Europe. European design rules were found to be conservative while Australian and American design rules were unsafe. This paper presents the results of the numerical study, the comparison with the current design rules and the new proposed design rules.
Resumo:
This project investigates machine listening and improvisation in interactive music systems with the goal of improvising musically appropriate accompaniment to an audio stream in real-time. The input audio may be from a live musical ensemble, or playback of a recording for use by a DJ. I present a collection of robust techniques for machine listening in the context of Western popular dance music genres, and strategies of improvisation to allow for intuitive and musically salient interaction in live performance. The findings are embodied in a computational agent – the Jambot – capable of real-time musical improvisation in an ensemble setting. Conceptually the agent’s functionality is split into three domains: reception, analysis and generation. The project has resulted in novel techniques for addressing a range of issues in each of these domains. In the reception domain I present a novel suite of onset detection algorithms for real-time detection and classification of percussive onsets. This suite achieves reasonable discrimination between the kick, snare and hi-hat attacks of a standard drum-kit, with sufficiently low-latency to allow perceptually simultaneous triggering of accompaniment notes. The onset detection algorithms are designed to operate in the context of complex polyphonic audio. In the analysis domain I present novel beat-tracking and metre-induction algorithms that operate in real-time and are responsive to change in a live setting. I also present a novel analytic model of rhythm, based on musically salient features. This model informs the generation process, affording intuitive parametric control and allowing for the creation of a broad range of interesting rhythms. In the generation domain I present a novel improvisatory architecture drawing on theories of music perception, which provides a mechanism for the real-time generation of complementary accompaniment in an ensemble setting. All of these innovations have been combined into a computational agent – the Jambot, which is capable of producing improvised percussive musical accompaniment to an audio stream in real-time. I situate the architectural philosophy of the Jambot within contemporary debate regarding the nature of cognition and artificial intelligence, and argue for an approach to algorithmic improvisation that privileges the minimisation of cognitive dissonance in human-computer interaction. This thesis contains extensive written discussions of the Jambot and its component algorithms, along with some comparative analyses of aspects of its operation and aesthetic evaluations of its output. The accompanying CD contains the Jambot software, along with video documentation of experiments and performances conducted during the project.
Resumo:
The article investigates the ascendency of the cafe in the current period of urbanism. I suggest that “going for a coffee” is less about coffee and more about how we connect with others in a mobile world, when flexible work hours are increasingly the norm and more people are living alone than any other period in history. The café also plays a role in the development of civil discourse and civility, and plays an important role in the development of cosmopolitan civil societies.
Resumo:
Load modelling plays an important role in power system dynamic stability assessment. One of the widely used methods in assessing load model impact on system dynamic response is parametric sensitivity analysis. A composite load model-based load sensitivity analysis framework is proposed. It enables comprehensive investigation into load modelling impacts on system stability considering the dynamic interactions between load and system dynamics. The effect of the location of individual as well as patches of composite loads in the vicinity on the sensitivity of the oscillatory modes is investigated. The impact of load composition on the overall sensitivity of the load is also investigated.
Resumo:
This thesis develops a detailed conceptual design method and a system software architecture defined with a parametric and generative evolutionary design system to support an integrated interdisciplinary building design approach. The research recognises the need to shift design efforts toward the earliest phases of the design process to support crucial design decisions that have a substantial cost implication on the overall project budget. The overall motivation of the research is to improve the quality of designs produced at the author's employer, the General Directorate of Major Works (GDMW) of the Saudi Arabian Armed Forces. GDMW produces many buildings that have standard requirements, across a wide range of environmental and social circumstances. A rapid means of customising designs for local circumstances would have significant benefits. The research considers the use of evolutionary genetic algorithms in the design process and the ability to generate and assess a wider range of potential design solutions than a human could manage. This wider ranging assessment, during the early stages of the design process, means that the generated solutions will be more appropriate for the defined design problem. The research work proposes a design method and system that promotes a collaborative relationship between human creativity and the computer capability. The tectonic design approach is adopted as a process oriented design that values the process of design as much as the product. The aim is to connect the evolutionary systems to performance assessment applications, which are used as prioritised fitness functions. This will produce design solutions that respond to their environmental and function requirements. This integrated, interdisciplinary approach to design will produce solutions through a design process that considers and balances the requirements of all aspects of the design. Since this thesis covers a wide area of research material, 'methodological pluralism' approach was used, incorporating both prescriptive and descriptive research methods. Multiple models of research were combined and the overall research was undertaken following three main stages, conceptualisation, developmental and evaluation. The first two stages lay the foundations for the specification of the proposed system where key aspects of the system that have not previously been proven in the literature, were implemented to test the feasibility of the system. As a result of combining the existing knowledge in the area with the newlyverified key aspects of the proposed system, this research can form the base for a future software development project. The evaluation stage, which includes building the prototype system to test and evaluate the system performance based on the criteria defined in the earlier stage, is not within the scope this thesis. The research results in a conceptual design method and a proposed system software architecture. The proposed system is called the 'Hierarchical Evolutionary Algorithmic Design (HEAD) System'. The HEAD system has shown to be feasible through the initial illustrative paper-based simulation. The HEAD system consists of the two main components - 'Design Schema' and the 'Synthesis Algorithms'. The HEAD system reflects the major research contribution in the way it is conceptualised, while secondary contributions are achieved within the system components. The design schema provides constraints on the generation of designs, thus enabling the designer to create a wide range of potential designs that can then be analysed for desirable characteristics. The design schema supports the digital representation of the human creativity of designers into a dynamic design framework that can be encoded and then executed through the use of evolutionary genetic algorithms. The design schema incorporates 2D and 3D geometry and graph theory for space layout planning and building formation using the Lowest Common Design Denominator (LCDD) of a parameterised 2D module and a 3D structural module. This provides a bridge between the standard adjacency requirements and the evolutionary system. The use of graphs as an input to the evolutionary algorithm supports the introduction of constraints in a way that is not supported by standard evolutionary techniques. The process of design synthesis is guided as a higher level description of the building that supports geometrical constraints. The Synthesis Algorithms component analyses designs at four levels, 'Room', 'Layout', 'Building' and 'Optimisation'. At each level multiple fitness functions are embedded into the genetic algorithm to target the specific requirements of the relevant decomposed part of the design problem. Decomposing the design problem to allow for the design requirements of each level to be dealt with separately and then reassembling them in a bottom up approach reduces the generation of non-viable solutions through constraining the options available at the next higher level. The iterative approach, in exploring the range of design solutions through modification of the design schema as the understanding of the design problem improves, assists in identifying conflicts in the design requirements. Additionally, the hierarchical set-up allows the embedding of multiple fitness functions into the genetic algorithm, each relevant to a specific level. This supports an integrated multi-level, multi-disciplinary approach. The HEAD system promotes a collaborative relationship between human creativity and the computer capability. The design schema component, as the input to the procedural algorithms, enables the encoding of certain aspects of the designer's subjective creativity. By focusing on finding solutions for the relevant sub-problems at the appropriate levels of detail, the hierarchical nature of the system assist in the design decision-making process.
Resumo:
Human activity-induced vibrations in slender structural sys tems become apparent in many different excitation modes and consequent action effects that cause discomfort to occupants, crowd panic and damage to public infrastructure. Resulting loss of public confidence in safety of structures, economic losses, cost of retrofit and repairs can be significant. Advanced computational and visualisation techniques enable engineers and architects to evolve bold and innovative structural forms, very often without precedence. New composite and hybrid materials that are making their presence in structural systems lack historical evidence of satisfactory performance over anticipated design life. These structural systems are susceptible to multi-modal and coupled excitation that are very complex and have inadequate design guidance in the present codes and good practice guides. Many incidents of amplified resonant response have been reported in buildings, footbridges, stadia a nd other crowded structures with adverse consequences. As a result, attenuation of human-induced vibration of innovative and slender structural systems very ofte n requires special studies during the design process. Dynamic activities possess variable characteristics and thereby induce complex responses in structures that are sensitive to parametric variations. Rigorous analytical techniques are available for investigation of such complex actions and responses to produce acceptable performance in structural systems. This paper presents an overview and a critique of existing code provisions for human-induced vibration followed by studies on the performance of three contrasting structural systems that exhibit complex vibration. The dynamic responses of these systems under human-induced vibrations have been carried out using experimentally validated computer simulation techniques. The outcomes of these studies will have engineering applications for safe and sustainable structures and a basis for developing design guidance.
Resumo:
Numerically investigation of natural convection within a differentially heated modified square enclosure with sinusoidally corrugated side walls has been performed for different values of Rayleigh number. The fluid inside the enclosure considered is air and is quiescent, initially. The top and bottom surfaces are flat and considered as adiabatic. Results reveal three main stages: an initial stage, a transitory or oscillatory stage and a steady stage for the development of natural convection flow inside the corrugated cavity. The numerical scheme is based on the finite element method adapted to triangular non-uniform mesh element by a non-linear parametric solution algorithm. Investigation has been performed for the Rayleigh number, Ra ranging from 105 to 108 with variation of corrugation amplitude and frequency. Constant physical properties for the fluid medium have been assumed. Results have been presented in terms of the isotherms, streamlines, temperature plots, average Nusselt numbers, traveling waves and thermal boundary layer thickness plots, temperature and velocity profiles. The effects of sudden differential heating and its consequent transient behavior on fluid flow and heat transfer characteristics have been observed for the range of governing parameters. The present results show that the transient phenomena are greatly influenced by the variation of the Rayleigh Number with corrugation amplitude and frequency.
Resumo:
This paper presents the details of a numerical study of a cold-formed steel beam known as LiteSteel Beam (LSB) subject to combined shear and bending actions. The LSB sections are produced by a patented manufacturing process involving simultaneous cold-forming and electric resistance welding. They have a unique shape of a channel beam with two rectangular hollow flanges. To date, however, no investigation has been conducted into the strength of LSB sections under combined shear and bending actions. Hence a numerical study was undertaken to investigate the behaviour and strength of LSBs subject to combined shear and bending actions. In this research, finite element models of LSBs were developed to simulate the combined shear and bending behaviour and strength of LSBs. They were then validated by comparing their results with test results and used in a parametric study. Both experimental and finite element analysis results showed that the current design equations are not suitable for combined shear and bending capacities of LSBs. Hence improved design equations are proposed for the capacities of LSBs subject to combined shear and bending actions.
Resumo:
Cold-formed steel members are increasingly used as primary structural elements in buildings due to the availability of thin and high strength steels and advanced cold-forming technologies. Cold-formed lipped channel beams (LCB) are commonly used as flexural members such as floor joists and bearers. Shear behaviour of LCBs with web openings is more complicated and their shear capacities are considerably reduced by the presence of web openings. However, limited research has been undertaken on the shear behaviour and strength of LCBs with web openings. Hence a numerical study was undertaken to investigate the shear behaviour and strength of LCBs with web openings. Finite element models of simply supported LCBs with aspect ratios of 1.0 and 1.5 were considered under a mid-span load. They were then validated by comparing their results with test results and used in a detailed parametric study. Experimental and numerical results showed that the current design rules in cold-formed steel structures design codes are very conservative for the shear design of LCBs with web openings. Improved design equations were therefore proposed for the shear strength of LCBs with web openings. This paper presents the details of this numerical study of LCBs with web openings, and the results.
Numerical and experimental studies of cold-formed steel floor systems under standard fire conditions
Resumo:
Light gauge cold-formed steel frame (LSF) structures are increasingly used in industrial, commercial and residential buildings because of their non-combustibility, dimensional stability, and ease of installation. A floor-ceiling system is an example of its applications. LSF floor-ceiling systems must be designed to serve as fire compartment boundaries and provide adequate fire resistance. Fire rated floor-ceiling assemblies formed with new materials and construction methodologies have been increasingly used in buildings. However, limited research has been undertaken in the past and hence a thorough understanding of their fire resistance behaviour is not available. Recently a new composite panel in which an external insulation layer is used between two plasterboards has been developed at QUT to provide a higher fire rating to LSF floors under standard fire conditions. But its increased fire rating could not be determined using the currently available design methods. Research on LSF floor systems under fire conditions is relatively recent and the behaviour of floor joists and other components in the systems is not fully understood. The present design methods thus require the use of expensive fire protection materials to protect them from excessive heat increase during a fire. This leads to uneconomical and conservative designs. Fire rating of these floor systems is provided simply by adding more plasterboard sheets to the steel joists and such an approach is totally inefficient. Hence a detailed fire research study was undertaken into the structural and thermal performance of LSF floor systems including those protected by the new composite panel system using full scale fire tests and extensive numerical studies. Experimental study included both the conventional and the new steel floor-ceiling systems under structural and fire loads using a gas furnace designed to deliver heat in accordance with the standard time- temperature curve in AS 1530.4 (SA, 2005). Fire tests included the behavioural and deflection characteristics of LSF floor joists until failure as well as related time-temperature measurements across the section and along the length of all the specimens. Full scale fire tests have shown that the structural and thermal performance of externally insulated LSF floor system was superior than traditional LSF floors with or without cavity insulation. Therefore this research recommends the use of the new composite panel system for cold-formed LSF floor-ceiling systems. The numerical analyses of LSF floor joists were undertaken using the finite element program ABAQUS based on the measured time-temperature profiles obtained from fire tests under both steady state and transient state conditions. Mechanical properties at elevated temperatures were considered based on the equations proposed by Dolamune Kankanamge and Mahendran (2011). Finite element models were calibrated using the full scale test results and used to further provide a detailed understanding of the structural fire behaviour of the LSF floor-ceiling systems. The models also confirmed the superior performance of the new composite panel system. The validated model was then used in a detailed parametric study. Fire tests and the numerical studies showed that plasterboards provided sufficient lateral restraint to LSF floor joists until their failure. Hence only the section moment capacity of LSF floor joists subjected to local buckling effects was considered in this research. To predict the section moment capacity at elevated temperatures, the effective section modulus of joists at ambient temperature is generally considered adequate. However, this research has shown that it leads to considerable over- estimation of the local buckling capacity of joist subject to non-uniform temperature distributions under fire conditions. Therefore new simplified fire design rules were proposed for LSF floor joist to determine the section moment capacity at elevated temperature based on AS/NZS 4600 (SA, 2005), NAS (AISI, 2007) and Eurocode 3 Part 1.3 (ECS, 2006). The accuracy of the proposed fire design rules was verified with finite element analysis results. A spread sheet based design tool was also developed based on these design rules to predict the failure load ratio versus time, moment capacity versus time and temperature for various LSF floor configurations. Idealised time-temperature profiles of LSF floor joists were developed based on fire test measurements. They were used in the detailed parametric study to fully understand the structural and fire behaviour of LSF floor panels. Simple design rules were also proposed to predict both critical average joist temperatures and failure times (fire rating) of LSF floor systems with various floor configurations and structural parameters under any given load ratio. Findings from this research have led to a comprehensive understanding of the structural and fire behaviour of LSF floor systems including those protected by the new composite panel, and simple design methods. These design rules were proposed within the guidelines of the Australian/New Zealand, American and European cold- formed steel structures standard codes of practice. These may also lead to further improvements to fire resistance through suitable modifications to the current composite panel system.
Resumo:
There is a need for an accurate real-time quantitative system that would enhance decision-making in the treatment of osteoarthritis. To achieve this objective, significant research is required that will enable articular cartilage properties to be measured and categorized for health and functionality without the need for laboratory tests involving biopsies for pathological evaluation. Such a system would provide the capability of access to the internal condition of the cartilage matrix and thus extend the vision-based arthroscopy that is currently used beyond the subjective evaluation of surgeons. The system required must be able to non-destructively probe the entire thickness of the cartilage and its immediate subchondral bone layer. In this thesis, near infrared spectroscopy is investigated for the purpose mentioned above. The aim is to relate it to the structure and load bearing properties of the cartilage matrix to the near infrared absorption spectrum and establish functional relationships that will provide objective, quantitative and repeatable categorization of cartilage condition outside the area of visible degradation in a joint. Based on results from traditional mechanical testing, their innovative interpretation and relationship with spectroscopic data, new parameters were developed. These were then evaluated for their consistency in discriminating between healthy viable and degraded cartilage. The mechanical and physico-chemical properties were related to specific regions of the near infrared absorption spectrum that were identified as part of the research conducted for this thesis. The relationships between the tissue's near infrared spectral response and the new parameters were modeled using multivariate statistical techniques based on partial least squares regression (PLSR). With significantly high levels of statistical correlation, the modeled relationships were demonstrated to possess considerable potential in predicting the properties of unknown tissue samples in a quick and non-destructive manner. In order to adapt near infrared spectroscopy for clinical applications, a balance between probe diameter and the number of active transmit-receive optic fibres must be optimized. This was achieved in the course of this research, resulting in an optimal probe configuration that could be adapted for joint tissue evaluation. Furthermore, as a proof-of-concept, a protocol for obtaining the new parameters from the near infrared absorption spectra of cartilage was developed and implemented in a graphical user interface (GUI)-based software, and used to assess cartilage-on-bone samples in vitro. This conceptual implementation has been demonstrated, in part by the individual parametric relationship with the near infrared absorption spectrum, the capacity of the proposed system to facilitate real-time, non-destructive evaluation of cartilage matrix integrity. In summary, the potential of the optical near infrared spectroscopy for evaluating articular cartilage and bone laminate has been demonstrated in this thesis. The approach could have a spin-off for other soft tissues and organs of the body. It builds on the earlier work of the group at QUT, enhancing the near infrared component of the ongoing research on developing a tool for cartilage evaluation that goes beyond visual and subjective methods.
Resumo:
Fire safety has become an important part in structural design due to the ever increasing loss of properties and lives during fires. Conventionally the fire rating of load bearing wall systems made of Light gauge Steel Frames (LSF) is determined using fire tests based on the standard time-temperature curve given in ISO 834 (ISO, 1999). The standard time-temperature curve given in ISO 834 (ISO, 1999) originated from the application of wood burning furnaces in the early 1900s. However, modern commercial and residential buildings make use of thermoplastic materials, which mean considerably high fuel loads. Hence a detailed fire research study into the performance of LSF walls was undertaken using the developed real fire curves based on Eurocode parametric curves (ECS, 2002) and Barnett’s BFD curves (Barnett, 2002) using both full scale fire tests and numerical studies. It included LSF walls without any insulation, and the recently developed externally insulated composite panel system. This paper presents the details of the numerical studies and the results. It also includes brief details of the development of real building fire curves and experimental studies.
Resumo:
Abstract. Fire resistance has become an important part in structural design due to the ever increasing loss of properties and lives every year. Conventionally the fire rating of load bearing Light gauge Steel Frame (LSF) walls is determined using standard fire tests based on the time-temperature curve given in ISO 834 [1]. Full scale fire testing based on this standard time-temperature curve originated from the application of wood burning furnaces in the early 1900s and it is questionable whether it truly represents the fuel loads in modern buildings. Hence a detailed fire research study into the performance of LSF walls was undertaken using real design fires based on Eurocode parametric curves [2] and Barnett’s ‘BFD’ curves [3]. This paper presents the development of these real fire curves and the results of full scale experimental study into the structural and fire behaviour of load bearing LSF stud wall systems.
Resumo:
Outdoor workers are exposed to high levels of ultraviolet radiation (UVR) and may thus be at greater risk to experience UVR-related health effects such as skin cancer, sun burn, and cataracts. A number of intervention trials (n=14) have aimed to improve outdoor workers’ work-related sun protection cognitions and behaviours. Only one study however has reported the use of UV-photography as part of a multi-component intervention. This study was performed in the USA and showed long-term (12 months) improvements in work-related sun protection behaviours. Intervention effects of the other studies have varied greatly, depending on the population studied, intervention applied, and measurement of effect. Previous studies have not assessed whether: - Interventions are similarly effective for workers in stringent and less stringent policy organisations; - Policy effect is translated into workers’ leisure time protection; - Implemented interventions are effective in the long-term; - The facial UV-photograph technique is effective in Australian male outdoor workers without a large additional intervention package, and; - Such interventions will also affect workers’ leisure time sun-related cognitions and behaviours. Therefore, the present Protection of Outdoor Workers from Environmental Radiation [POWER]-study aimed to fill these gaps and had the objectives of: a) assessing outdoor workers’ sun-related cognitions and behaviours at work and during leisure time in stringent and less stringent sun protection policy environments; b) assessing the effect of an appearance-based intervention on workers’ risk perceptions, intentions and behaviours over time; c) assessing whether the intervention was equally effective within the two policy settings; and d) assessing the immediate post-intervention effect. Effectiveness was described in terms of changes in sun-related risk perceptions and intentions (as these factors were shown to be main precursors of behaviour change in many health promotion theories) and behaviour. The study purposefully selected and recruited two organisations with a large outdoor worker contingent in Queensland, Australia within a 40 kilometre radius of Brisbane. The two organisations differed in the stringency of implementation and reinforcement of their organisational sun protection policy. Data were collected from 154 male predominantly Australian born outdoor workers with an average age of 37 years and predominantly medium to fair skin (83%). Sun-related cognitions and behaviours of workers were assessed using self-report questionnaires at baseline and six to twelve months later. Variation in follow-up time was due to a time difference in the recruitment of the two organisations. Participants within each organisation were assigned to an intervention or control group. The intervention group participants received a one-off personalised Skin Cancer Risk Assessment Tool [SCRAT]-letter and a facial UV-photograph with detailed verbal information. This was followed by an immediate post-intervention questionnaire within three months of the start of the study. The control group only received the baseline and follow-up questionnaire. Data were analysed using a variety of techniques including: descriptive analyses, parametric and non-parametric tests, and generalised estimating equations. A 15% proportional difference observed was deemed of clinical significance, with the addition of reported statistical significance (p<0.05) where applicable. Objective 1: Assess and compare the current sun-related risk perceptions, intentions, behaviours, and policy awareness of outdoor workers in stringent and less stringent sun protection policy settings. Workers within the two organisations (stringent n=89 and less stringent n=65) were similar in their knowledge about skin cancer, self efficacy, attitudes, and social norms regarding sun protection at work and during leisure time. Participants were predominantly in favour of sun protection. Results highlighted that compared to workers in a less stringent policy organisation working for an organisation with stringent sun protection policies and practices resulted in more desirable sun protection intentions (less willing to tan p=0.03) ; actual behaviours at work (sufficient use of upper and lower body protection, headgear, and sunglasses (p<0.001 for all comparisons), and greater policy awareness (awareness of repercussions if Personal Protective Equipment (PPE) was not used, p<0.001)). However the effect of the work-related sun protection policy was found not to extend to leisure time sun protection. Objective 2: Compare changes in sun-related risk perceptions, intentions, and behaviours between the intervention and control group. The effect of the intervention was minimal and mainly resulted in a clinically significant reduction in work-related self-perceived risk of developing skin cancer in the intervention compared to the control group (16% and 32% for intervention and control group, respectively estimated their risk higher compared to other outdoor workers: , p=0.11). No other clinical significant effects were observed at 12 months follow-up. Objective 3: Assess whether the intervention was equally effective in the stringent sun protection policy organisation and the less stringent sun protection policy organisation. The appearance-based intervention resulted in a clinically significant improvement in the stringent policy intervention group participants’ intention to protect from the sun at work (workplace*time interaction, p=0.01). In addition to a reduction in their willingness to tan both at work (will tan at baseline: 17% and 61%, p=0.06, at follow-up: 54% and 33%, p=0.07, stringent and less stringent policy intervention group respectively. The workplace*time interaction was significant p<0.001) and during leisure time (will tan at baseline: 42% and 78%, p=0.01, at follow-up: 50% and 63%, p=0.43, stringent and less stringent policy intervention group respectively. The workplace*time interaction was significant p=0.01) over the course of the study compared to the less stringent policy intervention group. However, no changes in actual sun protection behaviours were found. Objective 4: Examine the effect of the intervention on level of alarm and concern regarding the health of the skin as well as sun protection behaviours in both organisations. The immediate post-intervention results showed that the stringent policy organisation participants indicated to be less alarmed (p=0.04) and concerned (p<0.01) about the health of their skin and less likely to show the facial UV-photograph to others (family p=0.03) compared to the less stringent policy participants. A clinically significantly larger proportion of participants from the stringent policy organisation reported they worried more about skin cancer (65%) and skin freckling (43%) compared to those in the less stringent policy organisation (46%,and 23% respectively , after seeing the UV-photograph). In summary the results of this study suggest that the having a stringent work-related sun protection policy was significantly related to for work-time sun protection practices, but did not extend to leisure time sun protection. This could reflect the insufficient level of sun protection found in the general Australian population during leisure time. Alternatively, reactance caused by being restricted in personal decisions through work-time policy could have contributed to lower leisure time sun protection. Finally, other factors could have also contributed to the less than optimal leisure time sun protection behaviours reported, such as unmeasured personal or cultural barriers. All these factors combined may have lead to reduced willingness to take proper preventive action during leisure time exposure. The intervention did not result in any measurable difference between the intervention and control groups in sun protection behaviours in this population, potentially due to the long lag time between the implementation of the intervention and assessment at 12-months follow-up. In addition, high levels of sun protection behaviours were found at baseline (ceiling effect) which left little room for improvement. Further, this study did not assess sunscreen use, which was the predominant behaviour assessed in previous effective appearance-based interventions trials. Additionally, previous trials were mainly conducted in female populations, whilst the POWER-study’s population was all male. The observed immediate post-intervention result could be due to more emphasis being placed on sun protection and risks related to sun exposure in the stringent policy organisation. Therefore participants from the stringent policy organisation could have been more aware of harmful effects of UVR and hence, by knowing that they usually protect adequately, not be as alarmed or concerned as the participants from the less stringent policy organisation. In conclusion, a facial UV-photograph and SCRAT-letter information alone may not achieve large changes in sun-related cognitions and behaviour, especially of assessed 6-12 months after the intervention was implemented and in workers who are already quite well protected. Differences found between workers in the present study appear to be more attributable to organisational policy. However, against a background of organisational policy, this intervention may be a useful addition to sun-related workplace health and safety programs. The study findings have been interpreted while respecting a number of limitations. These have included non-random allocation of participants due to pre-organised allocation of participants to study group in one organisation and difficulty in separating participants from either study group. Due to the transient nature of the outdoor worker population, only 105 of 154 workers available at baseline could be reached for follow-up. (attrition rate=32%). In addition the discrepancy in the time to follow-up assessment between the two organisations was a limitation of the current study. Given the caveats of this research, the following recommendations were made for future research: - Consensus should be reached to define "outdoor worker" in terms of time spent outside at work as well as in the way sun protection behaviours are measured and reported. - Future studies should implement and assess the value of the facial UV-photographs in a wide range of outdoor worker organisations and countries. - More timely and frequent follow-up assessments should be implemented in intervention studies to determine the intervention effect and to identify the best timing of booster sessions to optimise results. - Future research should continue to aim to target outdoor workers’ leisure time cognitions and behaviours and improve these if possible. Overall, policy appears to be an important factor in workers’ compliance with work-time use of sun protection. Given the evidence generated by this research, organisations employing outdoor workers should consider stringent implementation and reinforcement of a sun protection policy. Finally, more research is needed to improve ways to generate desirable behaviour in this population during leisure time.