892 resultados para Oxidative radicals


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study we evaluated the effect of chronic methionine administration on oxidative stress and biochemical parameters in liver and serum of rats, respectively. We also performed histological analysis in liver. Results showed that hypermethioninemia increased chemiluminescence, carbonyl content and glutathione peroxidase activity, decreased total antioxidant potential, as well as altered catalase activity. Hypermethioninemia increased synthesis and concentration of glycogen, besides histological studies showed morphological alterations and reduction in the glycogen/glycoprotein content in liver. Serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and glucose were increased in hypermethioninemic rats. These findings suggest that oxidative damage and histological changes caused by methionine may be related to the hepatic injury observed in hypermethioninemia. (C) 2009 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hyperhomocysteinemia has been related to various diseases, including homocystinuria, neurodegenerative and hepatic diseases. In the present study we initially investigated the effect of chronic homocysteine administration on some parameters of oxidative stress, named total radical-trapping antioxidant potential, total antioxidant reactivity, catalase activity, chemiluminescence, thiobarbituric acid-reactive substances, and total thiol content in liver of rats. We also performed histological analysis, evaluating steatosis, inflammatory infiltration, fibrosis, and glycogen/glycoprotein content in liver tissue sections from hyperhomocysteinemic rats. Finally, we evaluated the activities of aminotransferases in liver and plasma of hyperhomocysteinemic rats. Wistar rats received daily subcutaneous injection of Hcy from their 6th to their 28th day of life. Twelve hours after the last injection the rats were sacrificed, liver and plasma were collected. Hyperhomocysteinemia decreased antioxidant defenses and total thiol content, and increased lipid peroxidation in liver of rats, characterizing a reliable oxidative stress. Histological analysis indicated the presence of inflammatory infiltrate, fibrosis and reduced content of glycogen/glycoprotein in liver tissue sections from hyperhomocysteinemic rats. Aminotransferases activities were not altered by homocysteine. Our data showed a consistent profile of liver injury elicited by homocysteine, which could contribute to explain, at least in part, the mechanisms involved in human liver diseases associated to hyperhomocysteinemia. (C) 2009 ISDN. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxidative stress has been associated with normal aging and Alzheimer`s disease (AD). However, little is known about oxidative stress in mild cognitive impairment (MCI) patients who present a high risk for developing AD. The aim of this study was to investigate plasma production of the lipid peroxidation marker, malonaldehyde (MDA) and to determine, in erythrocytes, the enzymatic antioxidant activity of catalase, glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione S-transferase (GST) in 33 individuals with MCI, 29 with mild probable AD and 26 healthy aged subjects. GR/GPx activity ratio was calculated to better assess antioxidant defenses. The relationship between oxidative stress and cognitive performance was also evaluated by the Mini Mental State Examination (MMSE). AD patients showed higher MDA levels than both MCI and healthy elderly subjects. MCI subjects also exhibited higher MDA levels compared to controls. Catalase and GPx activity were similar in MCI and healthy individuals but higher in AD. GR activity was lower in MCI and AD patients than in healthy aged subjects. Additionally, GR/GPx ratio was higher in healthy aged subjects, intermediate in MCI and lower in AD patients. No differences in GST activity were detected among the groups. MMSE was negatively associated with MDA levels (r = -0.31, p = 0.028) and positively correlated with GR/GPx ratio in AD patients (r = 0.68, p < 0.001). MDA levels were also negatively correlated to GR/GPx ratio (r = -0.31, p = 0.029) in the AD group. These results suggest that high lipid peroxidation and decreased antioxidant defenses may be present early in cognitive disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prostaglandins are known to be produced by macrophages when challenged with Trypanosoma cruzi, the etiological agent of Chagas` disease. It is not known whether these lipid mediators play a role in oxidative stress in host defenses against this important protozoan parasite. In this study, we demonstrated that inducible cyclooxygenase-mediated prostaglandin production is a key chemical mediator in the control of parasite burden and erythrocyte oxidative stress during T. cruzi infection in C57BL/6 and BALB/c mice, prototype hosts for the study of resistance and susceptibility in murine Chagas` disease. The results suggested the existence of at least two mechanisms of oxidative stress, dependent or independent with regard to the nitric oxide and cyclooxygenase pathway, where one or the other is more evident depending on the mouse strain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chagas` disease is accompanied by severe anemia and oxidative stress, which may contribute to mortality. In this study, we investigated the role of 5-lipoxygenase (5-LO) in the control of parasitism and anemia associated with oxidative damage of erythrocytes in experimental Trypanosoma cruzi infection. Wild-type C57BL/6, 129Sv mice treated or not with nordihydroguaiaretic acid (NDGA, 5-LO inhibitor), mice lacking the 5-LO enzyme gene (5-LO(-/-)) and inducible nitric oxide synthase gene (iNOS(-/-)) were infected with the Y strain of T cruzi. impairment of 5-LO resulted in increased numbers of trypomastigote forms in the blood and amastigote forms in the heart of infected mice. We assessed oxidative stress in erythrocytes by measuring oxygen uptake, induction time and chemiluminescence following treatment with tert-butyl hydroperoxide (TBH). Our results show that 5-LO metabolites increased lipid peroxidation levels in erythrocytes during the early phase of murine T cruzi infection. NDGA treatment reduced oxidative damage of erythrocytes in C57BL/6 T cruzi-infected mice but not in C57BL/6 iNOS-/- infected mice, showing that the action of NDGA is dependent on endogenous nitric oxide (NO). In addition, our results show that 5-LO metabolites do not participate directly in the development of anemia in infected mice. We conclude that 5-LO products may not only play a major role in controlling heart tissue parasitism, i.e., host resistance to acute infection with T cruzi in vivo, but in the event of an infection also play an important part in erythrocyte oxidative stress, an NO-dependent effect. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Caulobacter crescentus is a free-living alphaproteobacterium that has 11 predicted LysR-type transcriptional regulators (LTTRs). Previously, a C. crescentus mutant strain with a mini-Tn5lacZ transposon inserted into a gene encoding an LTTR was isolated; this mutant was sensitive to cadmium. In this work, a mutant strain with a deletion was obtained, and the role of this LTTR (called CztR here) was evaluated. The transcriptional start site of this gene was determined by primer extension analysis, and its promoter was cloned in front of a lacZ reporter gene. beta-Galactosidase activity assays, performed with the wild-type and mutant strains, indicated that this gene is 2-fold induced when cells enter stationary phase and that it is negatively autoregulated. Moreover, this regulator is essential for the expression of the divergent cztA gene at stationary phase, in minimal medium, and in response to zinc depletion. This gene encodes a hypothetical protein containing 10 predicted transmembrane segments, and its expression pattern suggests that it encodes a putative zinc transporter. The cztR strain was also shown to be sensitive to superoxide (generated by paraquat) and to hydrogen peroxide but not to tert-butyl hydroperoxide. The expression of katG and ahpC, but not that of the superoxide dismutase genes, was increased in the cztR mutant. A model is proposed to explain how CztR binding to the divergent regulatory regions could activate cztA expression and repress its own transcription.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The META cluster of Leishmania amazonensis contains both META1 and META2 genes, which are upregulated in metacyclic promastigotes and encode proteins containing the META domain. Previous studies defined META2 as a 48.0-kDa protein, which is conserved in other Leishmania species and in Trypanosoma brucei. In this work, we demonstrate that META2 protein expression is regulated during the Leishmania life cycle but constitutive in T. brucei. META2 protein is present in the cytoplasm and flagellum of L amazonensis promastigotes. Leishmania META2-null replacement mutants are more sensitive to oxidative stress and, upon heat shock, assume rounded morphology with shortened flagella. The increased susceptibility of null parasites to heat shock is reversed by extra-chromosomal expression of the META2 gene. Defective Leishmania promastigotes exhibit decreased ability to survive in macrophages. By contrast, META2 expression is decreased by 80% in RNAi-induced T. brucei bloodstream forms with no measurable effect on survival or resistance to heat shock. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The polymorphisms of endothelial nitric oxide synthase (eNOS) are associated with reduced eNOS activity. Aerobic exercise training (AEX) may influence resting nitric oxide (NO) production, oxidative stress and blood pressure. The purpose of this study was to investigate the effect of AEX on the relationship among blood pressure, eNOS gene polymorphism and oxidative stress in pre-hypertensive older people. 118 pre-hypertensive subjects (59 +/- A 6 years) had blood samples collected after a 12 h overnight fast for assessing plasma NO metabolites (NOx) assays, thiobarbituric acid reactive substances (T-BARS) and superoxide dismutase activity (ecSOD). eNOS polymorphism (T-786C and G-894T) was done by standard PCR methods. All people were divided according to the genotype results (G1: TT/GG, G2: TT/GT + TT, G3: TC + CC/GG, G4: TC + CC/GT + TT). All parameters were measured before and after 6 months of AEX (70% of VO(2 max)). At baseline, no difference was found in systolic and diastolic blood pressure, ecSOD and T-BARS activity. Plasma NOx levels were significantly different between G1 (19 +/- A 1 mu M) and G4 (14.2 +/- A 0.6 mu M) and between G2 (20.1 +/- A 1.7 mu M) and G4 (14.2 +/- A 0.6 mu M). Therefore, reduced NOx concentration in G4 group occurred only when the polymorphisms were associated, suggesting that these results are more related to genetic factors than NO-scavenging effect. After AEX, the G4 increased NOx values (17.2 +/- A 1.2 mu M) and decreased blood pressure. G1, G3 and G4 decreased T-BARS levels. These results suggest the AEX can modulate the NOx concentration, eNOS activity and the relationship among eNOS gene polymorphism, oxidative stress and blood pressure especially in C (T-786C) and T (G-894T) allele carriers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In most bacteria, the ferric uptake regulator (Fur) is a global regulator that controls iron homeostasis and other cellular processes, such as oxidative stress defense. In this work, we apply a combination of bioinformatics, in vitro and in vivo assays to identify the Caulobacter crescentus Fur regulon. A C. crescentus fur deletion mutant showed a slow growth phenotype, and was hypersensitive to H(2)O(2) and organic peroxide. Using a position weight matrix approach, several predicted Fur-binding sites were detected in the genome of C. crescentus, located in regulatory regions of genes not only involved in iron uptake and usage but also in other functions. Selected Fur-binding sites were validated using electrophoretic mobility shift assay and DNAse I footprinting analysis. Gene expression assays revealed that genes involved in iron uptake were repressed by iron-Fur and induced under conditions of iron limitation, whereas genes encoding iron-using proteins were activated by Fur under conditions of iron sufficiency. Furthermore, several genes that are regulated via small RNAs in other bacteria were found to be directly regulated by Fur in C. crescentus. In conclusion, Fur functions as an activator and as a repressor, integrating iron metabolism and oxidative stress response in C. crescentus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to assess the relation between the number of free radicals generated and the polymerization depth in two different commercial brands of resin composites with different colors and translucence. Electron paramagnetic resonance quantified the radical populations through relative intensity (I (r)) of free radicals generated, and radical decay was monitored. Sample translucence and the classical polymerization depth were measured. The analysis indicated that resin with more color pigments (MA4, I (r) = 0.73 a.u) or more opacity components (ODA2, I (r) = 0.84 a.u) generated smaller populations of free radicals and have the lower polymerization depth than clearer (M, I (r) = 1.20 a.u and MA2, I (r) = 1.02) or more translucent (OEA2, I (r) = 1.00 a.u) composites for the same light-curing time. It seems that irradiation doses have to be adequate to more colored and less translucent resins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selenoproteins are characterized by the incorporation of at least one amino acid selenocysteine (Sec-U) encoded by in-frame UGA stop codons. These proteins, as well as the components of the Sec synthesis pathway, are present in members of the bacteria, archaea and eukaryote domains. Although not a ubiquitous pathway in all organisms, it was also identified in several protozoa, including the Kinetoplastida. Genetic evidence has indicated that the pathway is non-essential to the survival of Trypanosoma growing in non-stressed conditions. By analyzing the effects of RNA interference of the Trypanosoma brucei selenophosphate synthetase SPS2, we found a requirement under sub-optimal growth conditions. The present work shows that SPS2 is involved in oxidative stress protection of the parasite and its absence severely hampers the parasite survival in the presence of an oxidizing environment that results in an apoptotic-like phenotype and cell death. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superoxide dismutases (SODs) are a crucial class of enzymes in the combat against intracellular free radical damage. They eliminate superoxide radicals by converting them into hydrogen peroxide and oxygen. In spite of their very different life cycles and infection strategies, the human parasites Plasmodium falciparum, Trypanosoma cruzi and Trypanosoma brucei are known to be sensitive to oxidative stress. Thus the parasite Fe-SODs have become attractive targets for novel drug development. Here we report the crystal structures of FeSODs from the trypanosomes T. brucei at 2.0 angstrom and T. cruzi at 1.9 angstrom resolution, and that from P. falciparum at a higher resolution (2.0 angstrom) to that previously reported. The homodimeric enzymes are compared to the related human MnSOD with particular attention to structural aspects which are relevant for drug design. Although the structures possess a very similar overall fold, differences between the enzymes at the entrance to the channel which leads to the active site could be identified. These lead to a slightly broader and more positively charged cavity in the parasite enzymes. Furthermore, a statistical coupling analysis (SCA) for the whole Fe/MnSOD family reveals different patterns of residue coupling for Mn and Fe SODs, as well as for the dimeric and tetrameric states. In both cases, the statistically coupled residues lie adjacent to the conserved core surrounding the metal center and may be expected to be responsible for its fine tuning, leading to metal ion specificity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the most useful methods for elimination of solid residues of health services (SRHS) is incineration. However, it also provokes the emission of several hazardous air pollutants such as heavy metals, furans and dioxins, which produce reactive oxygen species and oxidative stress. The present study, which is parallel to an accompanied paper (Avila Jr. et al., this issue), investigated several enzymatic and non-enzymatic biomarkers of oxidative stress in the blood (contents of vitamin E, lipoperoxidation = TBARS, reduced glutathione = GSH, oxidized glutathione = GSSG, and activities of glutathione S-transferase = GST, glutathione reductase = GR, glutathione peroxidase = GPx, catalase = CAT and superoxide dismutase = SOD), in three different groups (n = 20 each) exposed to airborne contamination associated with incineration of SRHS: workers directly (ca. 100 m from the incinerator) and indirectly exposed (residents living ca. 5 km the incineration site), and controls (non-exposed subjects). TBARS and GSSG levels were increased whilst GSH, TG and alpha-tocopherol contents were decreased in workers and residents compared to controls. Increased GST and CAT activities and decreased GPx activities were detected in exposed subjects compared to controls, while GR did not show any difference among the groups. In conclusion, subjects directly or indirectly exposed to SRHS are facing an oxidative insult and health risk regarding fly ashes contamination from SRHS incineration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxidized bases are common types of DNA modifications. Their accumulation in the genome is linked to aging and degenerative diseases. These modifications are commonly repaired by the base excision repair (BER) pathway. Oxoguanine DNA glycosylase (OGG1) initiates BER of oxidized purine bases. A small number of protein interactions have been identified for OGG1, while very few appear to have functional consequences. We report here that OGG1 interacts with the recombination protein RAD52 in vitro and in vivo. This interaction has reciprocal functional consequences as OGG1 inhibits RAD52 catalytic activities and RAD52 stimulates OGG1 incision activity, likely increasing its turnover rate. RAD52 colocalizes with OGG1 after oxidative stress to cultured cells, but not after the direct induction of double-strand breaks by ionizing radiation. Human cells depleted of RAD52 via small interfering RNA knockdown, and mouse cells lacking the protein via gene knockout showed increased sensitivity to oxidative stress. Moreover, cells depleted of RAD52 show higher accumulation of oxidized bases in their genome than cells with normal levels of RAD52. Our results indicate that RAD52 cooperates with OGG1 to repair oxidative DNA damage and enhances the cellular resistance to oxidative stress. Our observations suggest a coordinated action between these proteins that may be relevant when oxidative lesions positioned close to strand breaks impose a hindrance to RAD52 catalytic activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reactive oxygen species are a by-product of mitochondrial oxidative phosphorylation, derived from a small quantity of superoxide radicals generated during electron transport. We conducted a comprehensive and quantitative study of oxygen consumption, inner membrane potentials, and H(2)O(2) release in mitochondria isolated from rat brain, heart, kidney, liver, and skeletal muscle, using various respiratory substrates (alpha-ketoglutarate, glutamate, succinate, glycerol phosphate, and palmitoyl carnitine). The locations and properties of reactive oxygen species formation were determined using oxidative phosphorylation and the respiratory chain modulators oligomycin, rotenone, myxothiazol, and antimycin A and the Uncoupler CCCP. We found that in mitochondria isolated from most tissues incubated under physiologically relevant conditions, reactive oxygen release accounts for 0.1-0.2% of O(2) consumed. Our findings support an important participation of flavoenzymes and complex III and a substantial role for reverse electron transport to complex I as reactive oxygen species sources. Our results also indicate that succinate is an important substrate for isolated mitochondrial reactive oxygen production in brain, heart, kidney, and skeletal muscle, whereas fatty acids generate significant quantities of oxidants in kidney and liver. Finally, we found that increasing respiratory rates is an effective way to prevent mitochondrial oxidant release under many, but not all, conditions. Altogether, our data uncover and quantify many tissue-, substrate-, and site-specific characteristics of mitochondrial ROS release. (C) 2009 Elsevier Inc. All rights reserved.