911 resultados para Opencv, Zbar, Computer Vision


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A reação álcali-agregado - RAA é uma patologia de ação lenta que tem sido observada em construções de concreto capaz de comprometer suas estruturas. Sabe-se que a reação álcali-agregado é um fenômeno bastante complexo em virtude da grande variedade de rochas na natureza que são empregadas como agregados no preparo do concreto, podendo cada mineral utilizado afetar de forma distinta a reação ocorrida. Em função dos tipos de estrutura, das suas condições de exposição e dos materiais empregados, a RAA não se comporta sempre da mesma forma, em virtude disto a pesquisa constante neste tema é necessária para o meio técnico e a sociedade. Pesquisas laboratoriais, empíricas e experimentais tem sido rotina em muitos dos estudos da RAA dada ainda à carência de certas definições mais precisas a respeito dos métodos de ensaio, mas também em função da necessidade do melhor conhecimento dos materiais de uso em concretos como os agregados, cimentos, adições, aditivos entre outros e do comportamento da estrutura. Embora técnicas de prevenção possam reduzir significativamente a incidência da RAA, muitas estruturas foram construídas antes que tais medidas fossem conhecidas, havendo no Brasil vários casos de estruturas afetadas, sendo custosos os reparos dessas estruturas. Em estudos recentes sobre o tamanho das partículas de álcali-agregado e sua distribuição foi concluído que o tamanho do agregado está relacionado com o potencial danoso da RAA. Existem ainda indícios de que o tamanho e a distribuição dos poros do concreto também sejam capazes de influenciar o potencial reativo do concreto. Neste trabalho desenvolvemos um Sistema de Visão Artificial (SVA) que, com o uso de técnicas de Processamento de Imagens, é capaz de identificar em imagens de concreto, agregado e poros que atendam em sua forma, às especificações do usuário, possibilitando o cálculo da porosidade e produzindo imagens segmentadas à partir das quais será possível extrair dados relativos à geometria desses elementos. Serão feitas duas abordagens para a obtenção das imagens, uma por Escâner Comercial, que possui vantagens relacionadas à facilidade de aquisição do equipamento, e outra por micro tomógrafo. Uma vez obtidas informações sobre as amostras de concreto, estas podem ser utilizadas para pesquisar a RAA, comparar estruturas de risco com estruturas antigas de forma a melhorar a previsão de risco de ocorrência, bem como serem aplicadas a outras no estudo de outras patologias do concreto menos comuns no nosso país, como o efeito gelo/degelo.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the pioneering work of Gibson in 1950, Shape- From-Texture has been considered by researchers as a hard problem, mainly due to restrictive assumptions which often limit its applicability. We assume a very general stochastic homogeneity and perspective camera model, for both deterministic and stochastic textures. A multi-scale distortion is efficiently estimated with a previously presented method based on Fourier analysis and Gabor filters. The novel 3D reconstruction method that we propose applies to general shapes, and includes non-developable and extensive surfaces. Our algorithm is accurate, robust and compares favorably to the present state of the art of Shape-From- Texture. Results show its application to non-invasively study shape changes with laid-on textures, while rendering and retexturing of cloth is suggested for future work. © 2009 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a gradient-based motion capture system that robustly tracks a human hand, based on abstracted visual information - silhouettes. Despite the ambiguity in the visual data and despite the vulnerability of gradient-based methods in the face of such ambiguity, we minimise problems related to misfit by using a model of the hand's physiology, which is entirely non-visual, subject-invariant, and assumed to be known a priori. By modelling seven distinct aspects of the hand's physiology we derive prior densities which are incorporated into the tracking system within a Bayesian framework. We demonstrate how the posterior is formed, and how our formulation leads to the extraction of the maximum a posteriori estimate using a gradient-based search. Our results demonstrate an enormous improvement in tracking precision and reliability, while also achieving near real-time performance. © 2009 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we aim to reconstruct free-from 3D models from a single view by learning the prior knowledge of a specific class of objects. Instead of heuristically proposing specific regularities and defining parametric models as previous research, our shape prior is learned directly from existing 3D models under a framework based on the Gaussian Process Latent Variable Model (GPLVM). The major contributions of the paper include: 1) a probabilistic framework for prior-based reconstruction we propose, which requires no heuristic of the object, and can be easily generalized to handle various categories of 3D objects, and 2) an attempt at automatic reconstruction of more complex 3D shapes, like human bodies, from 2D silhouettes only. Qualitative and quantitative experimental results on both synthetic and real data demonstrate the efficacy of our new approach. ©2009 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new online multi-classifier boosting algorithm for learning object appearance models. In many cases the appearance model is multi-modal, which we capture by training and updating multiple strong classifiers. The proposed algorithm jointly learns the classifiers and a soft partitioning of the input space, defining an area of expertise for each classifier. We show how this formulation improves the specificity of the strong classifiers, allowing simultaneous location and pose estimation in a tracking task. The proposed online scheme iteratively adapts the classifiers during tracking. Experiments show that the algorithm successfully learns multi-modal appearance models during a short initial training phase, subsequently updating them for tracking an object under rapid appearance changes. © 2010 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an incremental learning solution for Linear Discriminant Analysis (LDA) and its applications to object recognition problems. We apply the sufficient spanning set approximation in three steps i.e. update for the total scatter matrix, between-class scatter matrix and the projected data matrix, which leads an online solution which closely agrees with the batch solution in accuracy while significantly reducing the computational complexity. The algorithm yields an efficient solution to incremental LDA even when the number of classes as well as the set size is large. The incremental LDA method has been also shown useful for semi-supervised online learning. Label propagation is done by integrating the incremental LDA into an EM framework. The method has been demonstrated in the task of merging large datasets which were collected during MPEG standardization for face image retrieval, face authentication using the BANCA dataset, and object categorisation using the Caltech101 dataset. © 2010 Springer Science+Business Media, LLC.