879 resultados para Ontology enterprise


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses an document discovery tool based on formal concept analysis. The program allows users to navigate email using a visual lattice metaphor rather than a tree. It implements a virtual file structure over email where files and entire directories can appear in multiple positions. The content and shape of the lattice formed by the conceptual ontology can assist in email discovery. The system described provides more flexibility in retrieving stored emails than what is normally available in email clients. The paper discusses how conceptual ontologies can leverage traditional document retrieval systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In view of the need to provide tools to facilitate the re-use of existing knowledge structures such as ontologies, we present in this paper a system, AKTiveRank, for the ranking of ontologies. AKTiveRank uses as input the search terms provided by a knowledge engineer and, using the output of an ontology search engine, ranks the ontologies. We apply a number of metrics in an attempt to investigate their appropriateness for ranking ontologies, and compare the results with a questionnaire-based human study. Our results show that AKTiveRank will have great utility although there is potential for improvement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evaluation of ontologies is vital for the growth of the Semantic Web. We consider a number of problems in evaluating a knowledge artifact like an ontology. We propose in this paper that one approach to ontology evaluation should be corpus or data driven. A corpus is the most accessible form of knowledge and its use allows a measure to be derived of the ‘fit’ between an ontology and a domain of knowledge. We consider a number of methods for measuring this ‘fit’ and propose a measure to evaluate structural fit, and a probabilistic approach to identifying the best ontology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ontologies have become a key component in the Semantic Web and Knowledge management. One accepted goal is to construct ontologies from a domain specific set of texts. An ontology reflects the background knowledge used in writing and reading a text. However, a text is an act of knowledge maintenance, in that it re-enforces the background assumptions, alters links and associations in the ontology, and adds new concepts. This means that background knowledge is rarely expressed in a machine interpretable manner. When it is, it is usually in the conceptual boundaries of the domain, e.g. in textbooks or when ideas are borrowed into other domains. We argue that a partial solution to this lies in searching external resources such as specialized glossaries and the internet. We show that a random selection of concept pairs from the Gene Ontology do not occur in a relevant corpus of texts from the journal Nature. In contrast, a significant proportion can be found on the internet. Thus, we conclude that sources external to the domain corpus are necessary for the automatic construction of ontologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automatic ontology building is a vital issue in many fields where they are currently built manually. This paper presents a user-centred methodology for ontology construction based on the use of Machine Learning and Natural Language Processing. In our approach, the user selects a corpus of texts and sketches a preliminary ontology (or selects an existing one) for a domain with a preliminary vocabulary associated to the elements in the ontology (lexicalisations). Examples of sentences involving such lexicalisation (e.g. ISA relation) in the corpus are automatically retrieved by the system. Retrieved examples are validated by the user and used by an adaptive Information Extraction system to generate patterns that discover other lexicalisations of the same objects in the ontology, possibly identifying new concepts or relations. New instances are added to the existing ontology or used to tune it. This process is repeated until a satisfactory ontology is obtained. The methodology largely automates the ontology construction process and the output is an ontology with an associated trained leaner to be used for further ontology modifications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the context of the needs of the Semantic Web and Knowledge Management, we consider what the requirements are of ontologies. The ontology as an artifact of knowledge representation is in danger of becoming a Chimera. We present a series of facts concerning the foundations on which automated ontology construction must build. We discuss a number of different functions that an ontology seeks to fulfill, and also a wish list of ideal functions. Our objective is to stimulate discussion as to the real requirements of ontology engineering and take the view that only a selective and restricted set of requirements will enable the beast to fly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fundamental failure of current approaches to ontology learning is to view it as single pipeline with one or more specific inputs and a single static output. In this paper, we present a novel approach to ontology learning which takes an iterative view of knowledge acquisition for ontologies. Our approach is founded on three open-ended resources: a set of texts, a set of learning patterns and a set of ontological triples, and the system seeks to maintain these in equilibrium. As events occur which disturb this equilibrium, actions are triggered to re-establish a balance between the resources. We present a gold standard based evaluation of the final output of the system, the intermediate output showing the iterative process and a comparison of performance using different seed input. The results are comparable to existing performance in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a new approach to ontology learning. Its basis lies in a dynamic and iterative view of knowledge acquisition for ontologies. The Abraxas approach is founded on three resources, a set of texts, a set of learning patterns and a set of ontological triples, each of which must remain in equilibrium. As events occur which disturb this equilibrium various actions are triggered to re-establish a balance between the resources. Such events include acquisition of a further text from external resources such as the Web or the addition of ontological triples to the ontology. We develop the concept of a knowledge gap between the coverage of an ontology and the corpus of texts as a measure triggering actions. We present an overview of the algorithm and its functionalities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Risk and knowledge are two concepts and components of business management which have so far been studied almost independently. This is especially true where risk management (RM) is conceived mainly in financial terms, as for example, in the financial institutions sector. Financial institutions are affected by internal and external changes with the consequent accommodation to new business models, new regulations and new global competition that includes new big players. These changes induce financial institutions to develop different methodologies for managing risk, such as the enterprise risk management (ERM) approach, in order to adopt a holistic view of risk management and, consequently, to deal with different types of risk, levels of risk appetite, and policies in risk management. However, the methodologies for analysing risk do not explicitly include knowledge management (KM). This research examines the potential relationships between KM and two RM concepts: perceived quality of risk control and perceived value of ERM. To fulfill the objective of identifying how KM concepts can have a positive influence on some RM concepts, a literature review of KM and its processes and RM and its processes was performed. From this literature review eight hypotheses were analysed using a classification into people, process and technology variables. The data for this research was gathered from a survey applied to risk management employees in financial institutions and 121 answers were analysed. The analysis of the data was based on multivariate techniques, more specifically stepwise regression analysis. The results showed that the perceived quality of risk control is significantly associated with the variables: perceived quality of risk knowledge sharing, perceived quality of communication among people, web channel functionality, and risk management information system functionality. However, the relationships of the KM variables to the perceived value of ERM are not identified because of the low performance of the models describing these relationships. The analysis reveals important insights into the potential KM support to RM such as: the better adoption of KM people and technology actions, the better the perceived quality of risk control. Equally, the results suggest that the quality of risk control and the benefits of ERM follow different patterns given that there is no correlation between both concepts and the distinct influence of the KM variables in each concept. The ERM scenario is different from that of risk control because ERM, as an answer to RM failures and adaptation to new regulation in financial institutions, has led organizations to adopt new processes, technologies, and governance models. Thus, the search for factors influencing the perceived value of ERM implementation needs additional analysis because what is improved in RM processes individually is not having the same effect on the perceived value of ERM. Based on these model results and the literature review the basis of the ERKMAS (Enterprise Risk Knowledge Management System) is presented.