930 resultados para Nutrients of accumulation


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The focus of this study was to disentangle the effects of multiple stressors on biodiversity, ecosystem functioning and stability. This project examined the effects of anthropogenic increased nutrient loads on the diversity of coastal ecosystems and the effects of loss of species on ecosystem functioning. Specifically, the direct effect of sewage outfalls on benthic communities was assessed using a fully replicated survey that incorporated spatial and temporal variation. In addition, two field experiments examined the effects of loss of species at multiple trophic levels, and tested for potential interactive effects with enhanced nutrient concentration conditions on benthic assemblage structure and ecosystem functioning. This research addressed priority issues outlined in the Biodiversity Knowledge Programme for Ireland (2006) and also aimed to deliver information relevant to European Union (EU) directives (the Water Framework Directive [WFD], the Habitats Directive and the Marine Strategy Framework Directive).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Diffuse contaminants can make their way into rivers via a number of different pathways, including overland flow, interflow, and shallow and deep groundwater. Identification of the key pathway(s) delivering contaminants to a receptor is important for implementing effective water management strategies. The ‘Pathways Project’, funded by the Irish Environmental Protection Agency, is developing a catchment management tool that will enable practitioners to identify the critical source areas for diffuse contaminants, and the key pathways of interest in assessing contaminant problems on a catchment and sub-catchment scale.
One of the aims of the project is to quantify the flow and contaminant loadings being delivered to the stream via each of the main pathways. Chemical separation of stream event hydrographs is being used to supplement more traditional physical hydrograph separation methods. Distinct, stable chemical signatures are derived for each of the pathway end members, and the proportion of flow from each during a rainfall event can be determined using a simple mass balance approach.
Event sampling was carried out in a test catchment underlain by poorly permeable soils and bedrock, which is predominantly used for grazing with a number of one-off rural residential houses. Results show that artificial field drainage, which includes subterranean land drains and collector drains around the perimeters of the 1 to 10 ha fields, plays an important role in the delivery of flow and nutrients to the streams in these types of hydrogeological settings.
Nitrate infiltrates with recharge and is delivered to the stream primarily via the artificial drains and the shallow groundwater pathway. Longitudinal stream profiles show that the nitrate load input is relatively uniform over the 8 km length of the stream at high flows, suggesting widespread diffuse contaminant input. In contrast, phosphorus is adsorbed in the clay-rich soil and is transported mainly via the overland flow pathway and the artificial drains. Longitudinal stream profiles for phosphorus suggest a pattern of more discrete points of phosphorus inputs, which may be related to point sources of contamination.
These techniques have application elsewhere within a toolkit of methods for determining the key pathways delivering contaminants to surface water receptors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Efficient Se biofortification programs require a thorough understanding of the accumulation and distribution of Se species within the rice grain. Therefore, the translocation of Se species to the filling grain and their spatial unloading were investigated. Se species were supplied via cut flag leaves of intact plants and excised panicle stems subjected to a +/- stem-girdling treatment during grain fill. Total Se concentrations in the flag leaves and grain were quantified by inductively coupled plasma mass spectrometry. Spatial accumulation was investigated using synchrotron X-ray fluorescence microtomography. Selenomethionine (SeMet) and selenomethylcysteine (SeMeSeCys) were transported to the grain more efficiently than selenite and selenate. SeMet and SeMeSeCys were translocated exclusively via the phloem, while inorganic Se was transported via both the phloem and xylem. For SeMet- and SeMeSeCys-fed grain, Se dispersed throughout the external grain layers and into the endosperm and, for SeMeSeCys, into the embryo. Selenite was retained at the point of grain entry. These results demonstrate that the organic Se species SeMet and SeMeSeCys are rapidly loaded into the phloem and transported to the grain far more efficiently than inorganic species. Organic Se species are distributed more readily, and extensively, throughout the grain than selenite.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Arsenobetaine has always been referred to as a non-toxic but readily bioavailable compound and the available data would suggest that it is neither metabolised by nor accumulated in humans. Here this study investigates the urine of five volunteers on an arsenobetaine exclusive diet for twelve days and shows that arsenobetaine was consistently excreted by three of the five volunteers. From the expected elimination pattern of arsenobetaine in rodents, no significant amount of arsenobetaine should have been detectable after 5 days of the trial period. The arsenobetaine concentration found in the urine was constant after 5 days and varied between 0.2 and 12.2 microg As per L for three of the volunteers. Contrary to the established belief that arsenobetaine is neither accumulated nor generated by humans, the presented results would suggest that either accumulated arsenobetaine in the tissues is slowly released over time or that arsenobetaine is a human metabolite of dimethylarsinic acid or inorganic arsenic from the trial food, or both. Either possibility is intriguing and raises fundamental questions about human arsenic metabolism and the toxicological and environmental inertness of arsenobetaine.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The concentration of arsenic (As) in rice grains has been identified as a risk to human health. The high proportion of inorganic species of As (As(i)) is of particular concern as it is a nonthreshold, class 1 human carcinogen. To be able to breed rice with low grain As, an understanding of genetic variation and the effect of different environments on genetic variation is needed. In this study, 13 cultivars grown at two field sites each in Bangladesh, India, and China are evaluated for grain As. There was a significant site, genotype, and site by genotype interaction for total grain As. Correlations were observed only between sites in Bangladesh and India, not between countries or within the Chinese sites. For seven cultivars the As was speciated which revealed significant effects of site, genotype, and site by genotype interaction for percentage As(i). Breeding low grain As cultivars that will have consistently low grain As and low As(i), over multiple environments using traditional breeding approaches may be difficult, although CT9993-5-10-1-M, Lemont, Azucena, and Te-qing in general had low grain As across the field sites.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

For many coastal regions of the world, it has been common practice to apply seaweed to the land as a soil improver and fertilizer. Seaweed is rich in arsenosugars and has a tissue concentration of arsenic up to 100 micro/g g(-1). These arsenic species are relatively nontoxic to humans; however, in the environment they may accumulate in the soil and decompose to more toxic arsenic species. The aim of this study was to determine the fate and biotransformation of these arsenosugars in soil using HPLC-ICP-MS analysis. Data from coastal soils currently manured with seaweeds were used to investigate if arsenic was accumulating in these soils. Long-term application of seaweed increased arsenic concentrations in these soils up to 10-fold (0.35 mg of As kg(-1) for nonagronomic peat, 4.3 mg of As kg(-1) for seaweed-amended peat). The biotransformation of arsenic was studied in microcosm experiments in which a sandy (machair) soil, traditionally manured with seaweed, was amended with Laminaria digitata and Fucus vesiculosus. In both seaweed species, the arsenic occurs in the form of arsenosugars (85%). The application of 50 g of seaweed to 1 kg of soil leads to an increase of arsenic in the soils, and the dominating species found in the soil pore water were dimethylarsinic acid (DMA(V)) and the inorganic species arsenate (As(V)) and arsenite (As(III)) after the initial appearance of arsenosugars. A proposed decomposition pathway of arsenosugars is discussed in which the arsenosugars are transformed to DMA(V) and further to inorganic arsenic without appreciable amounts of methylarsonic acid (MA(V)). Commercially available seaweed-based fertilizers contain arsenic concentration between 10 and 50 mg kg(-1). The arsenic species in these fertilizers depends on the manufacturing procedure. Some contain mainly arsenosugars while others contain mainly DMA(V) and inorganic arsenic. With the application rates suggested by the manufacturers, the application of these fertilizers is 2 orders of magnitude lower than the maximum permissible sewage sludge load for arsenic (varies from 0.025 kg ha(-1) yr(-1) in Styria, Austria, to 0.7 kg ha(-1) yr(-1) in the U.K.), while a direct seaweed application would exceed the maximum arsenic load by at least a factor of 2.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To use protein kinase C (PKC) d-knockout mice to investigate the role of PKCd in lesion development and to understand the underlying mechanism of the vascular disease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Land application of wastes from concentrated animal feeding operations results in accumulation of copper (Cu) and antimicrobials in terrestrial systems. Interaction between Cu and antimicrobials may change Cu speciation in soil solution, and affect Cu bioavailability and toxicity. In this study, earthworms were exposed to quartz sand percolated with different concentrations of Cu and ciprofloxacin (CIP). Copper uptake by earthworms, its subcellular partition, and toxicity were studied. An increase in the applied CIP decreased the free Cu ion concentration in external solution and mortalities of earthworm, while Cu contents in earthworms increased. Copper and CIP in earthworms were fractionated into five fractions: a granular fraction (D), a fraction consisting of tissue fragments, cell membranes, and intact cells (E), a microsomal fraction (F), a denatured proteins fraction (G), and a heat-stable proteins fraction (H). Most of the CIP in earthworms was in fraction H. Copper was redistributed from the metal-sensitive fraction E to fractions D, F, G, and H with increasing CIP concentration. These results challenge the free ion activity model and suggested that Cu may be partly taken up as Cu-CIP complexes in earthworms, changing the bioavailability, subcellular distribution, and toxicity of Cu to earthworms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To investigate the contribution of glycation and oxidation reactions to the modification of insoluble collagen in aging and diabetes, Maillard reaction products were measured in skin collagen from 39 type 1 diabetic patients and 52 nondiabetic control subjects. Compounds studied included fructoselysine (FL), the initial glycation product, and the glycoxidation products, N epsilon-(carboxymethyl) lysine (CML) and pentosidine, formed during later Maillard reactions. Collagen-linked fluorescence was also studied. In nondiabetic subjects, glycation of collagen (FL content) increased only 33% between 20 and 85 yr of age. In contrast, CML, pentosidine and fluorescence increased five-fold, correlating strongly with age. In diabetic patients, collagen FL was increased threefold compared with nondiabetic subjects, correlating strongly with glycated hemoglobin but not with age. Collagen CML, pentosidine and fluorescence were increased up to twofold in diabetic compared with control patients: this could be explained by the increase in glycation alone, without invoking increased oxidative stress. There were strong correlations among CML, pentosidine and fluorescence in both groups, providing evidence for age-dependent chemical modification of collagen via the Maillard reaction, and acceleration of this process in diabetes. These results support the description of diabetes as a disease characterized by accelerated chemical aging of long-lived tissue proteins.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

N epsilon-(Carboxymethyl)lysine (CML) is formed on oxidative cleavage of carbohydrate adducts to lysine residues in glycated proteins in vitro [Ahmed et al. (1988) J. Biol. Chem. 263, 8816-8821; Dunn et al. (1990) Biochemistry 29, 10964-10970]. We have shown that, in human lens proteins in vivo, the concentration of fructose-lysine (FL), the Amadori adduct of glucose to lysine, is constant with age, while the concentration of the oxidation product, CML, increases significantly with age [Dunn et al. (1989) Biochemistry 28, 9464-9468]. In this work we extend our studies to the analysis of human skin collagen. The extent of glycation of insoluble skin collagen was greater than that of lens proteins (4-6 mmol of FL/mol of lysine in collagen versus 1-2 mmol of FL/mol of lysine in lens proteins), consistent with the lower concentration of glucose in lens, compared to plasma. In contrast to lens, there was a slight but significant age-dependent increase in glycation of skin collagen, 33% between ages 20 and 80. As in lens protein, CML, present at only trace levels in neonatal collagen, increased significantly with age, although the amount of CML in collagen at 80 years of age, approximately 1.5 mmol of CML/mol of lysine, was less than that found in lens protein, approximately 7 mmol of CML/mol of lysine. The concentration of N epsilon-(carboxymethyl)hydroxylysine (CMhL), the product of oxidation of glycated hydroxylysine, also increased with age in collagen, in parallel with the increase in CML, from trace levels at infancy to approximately 5 mmol of CMhL/mol of hydroxylysine at age 80.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Jasmonates (JA) act as a regulator in plant growth as well as a signal in plant defense. The Arabidopsis vegetative storage protein (AtVSP) and plant defense-related proteins thionin (Thi2.1) and defensin (PDF1.2) have previously been shown to accumulate in response to JA induction. In this report, we isolated and characterized a novel recessive mutant, cex1, conferring constitutive JA-responsive phenotypes including JA-inhibitory growth and constitutive expression of JA-regulated AtVSP, Thi2.1 and PDF1.2. The plant morphology and the gene expression pattern of the cex1 mutant could be phenocopied by treatment of wild-type plants with exogenous JA, indicating that CEX1 might be a negative regulator of the JA response pathway.