970 resultados para Nuclear engineering.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the filling and reconstruction of non-healing bone defects, the application of porous ceramic scaffold as bone substitutes is considered to be a reasonable choice. In bone tissue engineering, an ideal scaffold must satisfy several criterias such as open porosity, having high compressive strength (it depends where in body, and if external fixatures are used) and the practicability for cell migration. Many researchers have focused on enhancing the mechanical properties of hydroxyapatite scaffolds by combining it with other biomaterials, such as bioglass and polymers. Nevertheless, there is still a lack of suitable scaffolds based on porous biomaterials. In this study, zirconia scaffolds from two different templates (polyurethane (PU) and Acrylonitrile Butadiene Styrene (ABS) templates) were successfully fabricated with dissimilar fabrication techniques. The scaffold surfaces were further modified with mesoporous bioglass for the purpose of bone tissue engineering. In the study of PU template scaffold, high porosity (~88%) sol-gel derived yttria-stabilized zirconia (YSZ) scaffold was prepared by a polyurethane (PU) foam replica method using sol-gel derived zirconia for the first time, and double coated with Mesoporous Bioglass (MBGs) coating. For the ABS template scaffold, two types of templates (cube and cylinder) with different strut spacings were used and fabricated by a 3D Rapid Prototyper. Subsequently, zirconia scaffolds with low porosity (63±2.8% to 68±2.5%) were fabricated by embedding the zirconia powder slurry into the ABS templates and burning out the ABS to produce a uniform porous structure. The zirconia scaffolds were double coated with mesoporous bioglass by dip coating for the first time. The porosities of the scaffolds were calculated before and after coating. The microstructures were then examined using scanning electron microscopy and the mechanical properties were evaluated using compressive test. Accordingly, relationships between microstructure, processing and mechanical behaviour of the porous zirconia was discussed. Scaffold biocompatibility and bioactivity was also evaluated using a bone marrow stromal cell (BMSC) proliferation test and a simulated body fluid test.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calcium Phosphate ceramics have been widely used in tissue engineering due to their excellent biocompatibility and biodegradability. In the physiological environment, they are able to gradually degrade, absorbed and promote bone growth. Ultimately, they are capable of replacing damaged bone with new tissue. However, their low mechanical properties limit calcium phosphate ceramics in load-bearing applications. To obtain sufficient mechanical properties as well as high biocompatibility is one of the main focuses in biomaterials research. Therefore, the current project focuses on the preparation and characterization of porous tri-calcium phosphate (TCP) ceramic scaffolds. Hydroxapatite (HA) was used as the raw material, and normal calcium phosphate bioglass was added to adjust the ratio between calcium and phosphate. It was found that when 20% bioglass was added to HA and sintered at 1400oC for 3 hours, the TCP scaffold was obtained and this was confirmed by X-ray diffraction (XRD) analysis. Test results have shown that by applying this method, TCP scaffolds have significantly higher compressive strength (9.98MPa) than those made via TCP powder (<3MPa). Moreover, in order to further increase the compressive strength of TCP scaffolds, the samples were then coated with bioglass. For normal bioglass coated TCP scaffold, compressive strength was 16.69±0.5MPa; the compressive strength for single layer mesoporous bioglass coated scaffolds was 15.03±0.63MPa. In addition, this project has also concentrated on sizes and shapes effects; it was found that the cylinder scaffolds have more mechanical property than the club ones. In addition, this project performed cell culture within scaffold to assess biocompatibility. The cells were well distributed in the scaffold, and the cytotoxicity test was performed by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di- phenytetrazoliumromide (MTT) assay. The Alkaline Phosphatase (Alp) activity of human bone marrow mesenchymal stem cell system (hBMSCs) seeded on scaffold expressed higher in vitro than that in the positive control groups in osteogenic medium, which indicated that the scaffolds were both osteoconductive and osteoinductive, showing potential value in bone tissue engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Project-based learning (PBL) is widely used in engineering courses. The closer to real-life the project, the greater the relevance and depth of learning experienced by students. Formula Society of Automotive Engineering (FSAE) is a fine example of a team-based project modelled on real-life problems whereby each student team designs and builds a small race car for competitive evaluation. Queensland University of Technology (QUT) has participated in FSAE-Australia since 2004. Based on the success of the project, QUT has gone the additional step of introducing a motor-racing specialization (second major) to complement its mechanical engineering degree. In this paper, the benefits of teaching motor-racing engineering through real-life projects are presented together with a discussion of the challenges faced and how they have been addressed. In order to validate the authors' observations on the teaching approaches used, student feedback was solicited through QUT's online learning experience survey (LEX), as well as a customized paper-based survey. The results of the surveys are analysed and discussed in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to clarify the relationship between the mechanical environment at the fracture site and endogenous fibroblast growth factor-2 (FGF-2). We compared two types of fracture healing with different callus formations and cellular events using MouseFix(TM) plate fixation systems for murine fracture models. Left femoral fractures were induced in 72 ten-week-old mice and then fixed with a flexible (Group F) or rigid (Group R) Mouse Fix(TM) plate. Mice were sacrificed on days 3, 5, 7, 10, 14, and 21. The callus volumes were measured by 3D micro-CT and tissues were histologically stained with hematoxylin & eosin or safranin-O. Sections from days 3, 5, and 7 were immunostained for FGF-2 and Proliferating Cell Nuclear Antigen (PCNA). The callus in Group F was significantly larger than that in Group R. The rigid plate allowed bone union without a marked external callus or chondrogenesis. The flexible plate formed a large external callus as a result of endochondral ossification. Fibroblastic cells in the granulation tissue on days 5 and 7 in Group F showed marked FGF-2 expression compared with Group R. Fibroblastic cells showed ongoing proliferation in granulation tissue in group F, as indicated by PCNA expression, which explained the relative granulation tissue increase in group F. There were major differences in early phase endogenous FGF-2 expression between these two fracture healing processes, due to different mechanical environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of game strategies have been developed in past decades and used in the fields of economics, engineering, computer science, and biology due to their efficiency in solving design optimization problems. In addition, research in multiobjective and multidisciplinary design optimization has focused on developing a robust and efficient optimization method so it can produce a set of high quality solutions with less computational time. In this paper, two optimization techniques are considered; the first optimization method uses multifidelity hierarchical Pareto-optimality. The second optimization method uses the combination of game strategies Nash-equilibrium and Pareto-optimality. This paper shows how game strategies can be coupled to multiobjective evolutionary algorithms and robust design techniques to produce a set of high quality solutions. Numerical results obtained from both optimization methods are compared in terms of computational expense and model quality. The benefits of using Hybrid and non-Hybrid-Game strategies are demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this editorial letter, we provide the readers of Information Systems with a birds-eye introduction to Process-aware Information Systems (PAIS) – a sub-field of Information Systems that has drawn growing attention in the past two decades, both as an engineering and as a management discipline. Against this backdrop, we briefly discuss how the papers included in this special issue contribute to extending the body of knowledge in this field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fibre composite structures have become the most attractive candidate for civil engineering applications. Fibre reinforced plastic polymer (FRP) composite materials have been used in the rehabilitation and replacement of the old degrading traditional structures or build new structures. However, the lack of design standards for civil infrastructure limits their structural applications. The majority of the existing applications have been designed based on the research and guidelines provided by the fibre composite manufacturers or based on the designer’s experience. It has been a tendency that the final structure is generally over-designed. This paper provides a review on the available studies related to the design optimization of fibre composite structures used in civil engineering such as; plate, beam, box beam, sandwich panel, bridge girder, and bridge deck. Various optimization methods are presented and compared. In addition, the importance of using the appropriate optimization technique is discussed. An improved methodology, which considering experimental testing, numerical modelling, and design constrains, is proposed in the paper for design optimization of composite structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many studies into construction procurement methods reveal evidence of a need to change the culture and attitude in the construction industry, transition from traditional adversarial relationships to cooperative and collaborative relationships. At the same time there is also increasing concern and discussion on alternative procurement methods, involving a movement away from traditional procurement systems. Relational contracting approaches, such as partnering and relationship management, are business strategies that align the objectives of clients, commercial participants and stakeholders. It provides a collaborative environment and a framework for all participants to adapt their behaviour to project objectives and allows for engagement of those subcontractors and suppliers down the supply chain. The efficacy of relationship management in the client and contractor groups is proven and well documented. However, the industry has a history of slow implementation of relational contracting down the supply chain. Furthermore, there exists little research on relationship management conducted in the supply chain context. This research aims to explore the association between relational contracting structures and processes and supply chain sustainability in the civil engineering construction industry. It endeavours to shed light on the practices and prerequisites for relationship management implementation success and for supply sustainability to develop. The research methodology is a triangulated approach based on Cheung.s (2006) earlier research where questionnaire survey, interviews and case studies were conducted. This new research includes a face-to-face questionnaire survey that was carried out with 100 professionals from 27 contracting organisations in Queensland from June 2008 to January 2009. A follow-up survey sub-questionnaire, further examining project participants. perspectives was sent to another group of professionals (as identified in the main questionnaire survey). Statistical analysis including multiple regression, correlation, principal component factor analysis and analysis of variance were used to identify the underlying dimensions and test the relationships among variables. Interviews and case studies were conducted to assist in providing a deeper understanding as well as explaining findings of the quantitative study. The qualitative approaches also gave the opportunity to critique and validate the research findings. This research presents the implementation of relationship management from the contractor.s perspective. Findings show that the adaption of relational contracting approach in the supply chain is found to be limited; contractors still prefer to keep the suppliers and subcontractors at arm.s length. This research shows that the degree of match and mismatch between organisational structuring and organisational process has an impact on staff.s commitment level and performance effectiveness. Key issues affecting performance effectiveness and relationship effectiveness include total influence between parties, access to information, personal acquaintance, communication process, risk identification, timely problem solving and commercial framework. Findings also indicate that alliance and Early Contractor Involvement (ECI) projects achieve higher performance effectiveness at both short-term and long-term levels compared to projects with either no or partial relationship management adopted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introducing engineering-based model-eliciting experiences in the elementary curriculum is a new and increasingly important domain of research by mathematics, science, technology, and engineering educators. Recent research has raised questions about the context of engineering problems that are meaningful, engaging, and inspiring for young students. In the present study an environmental engineering activity was implemented in two classes of 11-year-old students in Cyprus. The problem required students to develop a procedure for selecting among alternative countries from which to buy water. Students created a range of models that adequately solved the problem although not all models took into account all of the data provided. The models varied in the number of problem factors taken into consideration and also in the different approaches adopted in dealing with the problem factors. At least two groups of students integrated into their models the environmental aspect of the problem (energy consumption, water pollution) and further refined their models. Results indicate that engineering model-eliciting activities can be introduced effectively into the elementary curriculum, providing rich opportunities for students to deal with engineering contexts and to apply their learning in mathematics and science to solving real-world engineering problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low oxygen pressure (hypoxia) plays an important role in stimulating angiogenesis; there are, however, few studies to prepare hypoxia-mimicking tissue engineering scaffolds. Mesoporous bioactive glass (MBG) has been developed as scaffolds with excellent osteogenic properties for bone regeneration. Ionic cobalt (Co) is established as a chemical inducer of hypoxia-inducible factor (HIF)-1α, which induces hypoxia-like response. The aim of this study was to develop hypoxia-mimicking MBG scaffolds by incorporating ionic Co2+ into MBG scaffolds and investigate if the addition of Co2+ ions would induce a cellular hypoxic response in such a tissue engineering scaffold system. The composition, microstructure and mesopore properties (specific surface area, nano-pore volume and nano-pore distribution) of Co-containing MBG (Co-MBG) scaffolds were characterized and the cellular effects of Co on the proliferation, differentiation, vascular endothelial growth factor (VEGF) secretion, HIF-1α expression and bone-related gene expression of human bone marrow stromal cells (BMSCs) in MBG scaffolds were systematically investigated. The results showed that low amounts of Co (< 5%) incorporated into MBG scaffolds had no significant cytotoxicity and that their incorporation significantly enhanced VEGF protein secretion, HIF-1α expression, and bone-related gene expression in BMSCs, and also that the Co-MBG scaffolds support BMSC attachment and proliferation. The scaffolds maintain a well-ordered mesopore channel structure and high specific surface area and have the capacity to efficiently deliver antibiotics drugs; in fact, the sustained released of ampicillin by Co-MBG scaffolds gives them excellent anti-bacterial properties. Our results indicate that incorporating cobalt ions into MBG scaffolds is a viable option for preparing hypoxia-mimicking tissue engineering scaffolds and significantly enhanced hypoxia function. The hypoxia-mimicking MBG scaffolds have great potential for bone tissue engineering applications by combining enhanced angiogenesis with already existing osteogenic properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many of the teaching elements in Civil and Environmental Engineering and Spatial Science/Surveying are strongly related to multidisciplinary real-world situations. Professionals in each discipline commonly work collaboratively, knowing each other’s professional and technical limitations and requirements. Replication of such real-world situations allows students to gain an insight and acquire knowledge of professional practice for both civil engineering and spatial science disciplines. However, replication of an authentic design project is not always possible in a single unit basis where empirical project situations are often created with controlled sets of constraints, inputs and outputs. A cross-disciplinary design-based project that is designed to promote active student learning, engagement and professional integration would be the preferred option. The central aim of this collaborative project was to create positive and inclusive environments to promote engaging learning opportunities that cater for a range of learning styles with a two-way linkage involving third-year civil engineering and spatial science (surveying) students. This paper describes the cross-disciplinary project developed and delivered in 2010 and 2011. A survey was conducted at completion of the project to assess the degree of improvement in student engagement and their learning experiences. Improvements were assessed in a range of dimensions including student motivation, learning by cross-disciplinary collaboration and learning by authentic design project experiences. In this specific cross-disciplinary linkage project, the study findings showed that teaching approaches utilised have been effective in promoting active student learning and increasing engagement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Building Information Modeling (BIM) is a modern approach to the design, documentation, delivery, and life cycle management of buildings through the use of project information databases coupled with object-based parametric modeling. BIM has the potential to revolutionize the Architecture, Engineering and Construction (AEC) industry in terms of the positive impact it may have on information flows, working relationships between project participants from different disciplines and the resulting benefits it may achieve through improvements to conventional methods. This chapter reviews the development of BIM, the extent to which BIM has been implemented in Australia, and the factors which have affected the up-take of BIM. More specifically, the objectives of this chapter are to investigate the adoption of BIM in the Australian AEC industry and factors that contribute towards the uptake (or non uptake) of BIM. These objectives are met by a review of the related literature in the first instance, followed by the presentation of the results of a 2007 postal questionnaire survey and telephone interviews of a random sample of professionals in the Australian AEC industry. The responses suggest that less than 25 percent of the sample had been involved in BIM – rather less than might be expected from reading the literature. Also, of those who have been involved with BIM, there has been very little interdisciplinary collaboration. The main barriers impeding the implementation of BIM widely across the Australian AEC industry are also identified. These were found to be primarily a lack of BIM expertise, lack of awareness and resistance to change. The benefits experienced as a result of using BIM are also discussed. These include improved design consistency, better coordination, cost savings, higher quality work, greater productivity and increased speed of delivery. In terms of conclusion, some suggestions are made concerning the underlying practical reasons for the slow up-take of BIM and the successes for those early adopters. Prospects for future improvement are discussed and proposals are also made for a large scale worldwide comparative study covering industry-wide participants