917 resultados para Non-linear loads
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência Animal - FMVA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
A utilização de Estabilizadores de Sistemas de Potência (ESP), para amortecer oscilações eletromecânicas de pequena magnitude e baixa freqüência, é cada vez mais importante na operação dos modernos sistemas elétricos. Estabilizadores convencionais, com estrutura e parâmetros fixos, têm sido utilizados com essa finalidade há algumas décadas, porém existem regiões de operação do sistema nas quais esses estabilizadores lineares não são tão eficientes, especialmente quando comparados com estabilizadores projetados através de modernas técnicas de controle. Um ESP Neural, treinado a partir de um conjunto de controladores lineares locais, é utilizado para investigar em quais regiões de operação do sistema elétrico o desempenho do estabilizador a parâmetros fixos é deteriorada. O melhor desempenho do ESP Neural nessas regiões de operação, quando comparado com o ESP convencional, é demonstrado através de simulações digitais não-lineares de um sistema do tipo máquina síncrona conectada a um barramento infinito e de um sistema com quatro geradores.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Fisioterapia - FCT
Resumo:
In this paper we study the behavior of a semi-active suspension witch external vibrations. The mathematical model is proposed coupled to a magneto rheological (MR) damper. The goal of this work is stabilize of the external vibration that affect the comfort and durability an vehicle, to control these vibrations we propose the combination of two control strategies, the optimal linear control and the magneto rheological (MR) damper. The optimal linear control is a linear feedback control problem for nonlinear systems, under the optimal control theory viewpoint We also developed the optimal linear control design with the scope in to reducing the external vibrating of the nonlinear systems in a stable point. Here, we discuss the conditions that allow us to the linear optimal control for this kind of non-linear system.
Resumo:
The current study used strain gauge analysis to perform an in vitro evaluation of the effect of axial and non-axial loading on implant-supported fixed partial prostheses, varying the implant placement configurations and the loading points. Three internal hexagon implants were embedded in the center of each polyurethane block with in-line and offset placements. Microunit abutments were connected to the implants using a torque of 20 N.cm, and plastic prosthetic cylinders were screwed onto the abutments, which received standard patterns cast in Co-Cr alloy (n = 10). Four strain gauges (SGs) were bonded onto the surfaces of the blocks, tangentially to the implants: SG 01 mesially to implant 1, SG 02 and SG 03 mesially and distally to implant 2, respectively, and SG 04 distally to implant 3. Each metallic structure was screwed onto the abutments using a 10-N.cm torque, and axial and non-axial loads of 30 kg were applied at 5 predetermined points. The data obtained from the strain gauge analyses were analyzed statistically through the repeated measures analysis of variance and the Tukey test, with a conventional level of significance of P < 0.05. The results showed a statistically significant difference for the loading point (P = 0.0001), with point E (nonaxial) generating the highest microstrain (327.67 mu epsilon) and point A (axial) generating the smallest microstrain (208.93 mu epsilon). No statistically significant difference was found for implant placement configuration (P = 0.856). It was concluded that the offset implant placement did not reduce the magnitude of microstrain around the implants under axial and non-axial loading conditions, although loading location did influence this magnitude.