872 resultados para Neural Networks, Hardware, In-The-Loop Training
Resumo:
dIn this work, a perceptron neural-network technique is applied to estimate hourly values of the diffuse solar-radiation at the surface in São Paulo City, Brazil, using as input the global solar-radiation and other meteorological parameters measured from 1998 to 2001. The neural-network verification was performed using the hourly measurements of diffuse solar-radiation obtained during the year 2002. The neural network was developed based on both feature determination and pattern selection techniques. It was found that the inclusion of the atmospheric long-wave radiation as input improves the neural-network performance. on the other hand traditional meteorological parameters, like air temperature and atmospheric pressure, are not as important as long-wave radiation which acts as a surrogate for cloud-cover information on the regional scale. An objective evaluation has shown that the diffuse solar-radiation is better reproduced by neural network synthetic series than by a correlation model. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
This paper proposes an approach of optimal sensitivity applied in the tertiary loop of the automatic generation control. The approach is based on the theorem of non-linear perturbation. From an optimal operation point obtained by an optimal power flow a new optimal operation point is directly determined after a perturbation, i.e., without the necessity of an iterative process. This new optimal operation point satisfies the constraints of the problem for small perturbation in the loads. The participation factors and the voltage set point of the automatic voltage regulators (AVR) of the generators are determined by the technique of optimal sensitivity, considering the effects of the active power losses minimization and the network constraints. The participation factors and voltage set point of the generators are supplied directly to a computational program of dynamic simulation of the automatic generation control, named by power sensitivity mode. Test results are presented to show the good performance of this approach. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Neural stem/progenitor cell (NSP) biology and neurogenesis in adult central nervous system (CNS) are important both towards potential future therapeutic applications for CNS repair, and for the fundamental function of the CNS. In the present study, we report the characterization of NSP population from subventricular zone (SVZ) of neonatal piglet brain using in vivo and in vitro systems. We show that the nestin and vimentin-positive neural progenitor cells are present in the SVZ of the lateral ventricles of neonatal piglet brain. In vitro, piglet NSPs proliferated as neurospheres, expressed the typical protein of neural progenitors, nestin and a range of well-established neurodevelopmental markers. Upon dissociation and subculture, piglet NSPs differentiated into neurons and glial cells. Clonal analysis demonstrates that piglet NSPs are multi-potent and retain the capacity to generate both glia and neurons. These cells expressed VEGF, VEGFR1, VEGFR2 and Neuropilin-1 and -2 mRNAs. Real time PCR revealed that SVZ NSPs from newborn piglet expressed total VEGF and all VEGF splice variants. These findings show that piglet NSPs may be helpful to more effectively design growth factor based strategies to enhance endogenous precursor cells for cell transplantation studies potentially leading to the application of this strategy in the nervous system disease and injury.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this article, an implementation of structural health monitoring process automation based on vibration measurements is proposed. The work presents an alternative approach which intent is to exploit the capability of model updating techniques associated to neural networks to be used in a process of automation of fault detection. The updating procedure supplies a reliable model which permits to simulate any damage condition in order to establish direct correlation between faults and deviation in the response of the model. The ability of the neural networks to recognize, at known signature, changes in the actual data of a model in real time are explored to investigate changes of the actual operation conditions of the system. The learning of the network is performed using a compressed spectrum signal created for each specific type of fault. Different fault conditions for a frame structure are evaluated using simulated data as well as measured experimental data.
Resumo:
In recent years, many researchers in the field of biomedical sciences have made successful use of mathematical models to study, in a quantitative way, a multitude of phenomena such as those found in disease dynamics, control of physiological systems, optimization of drug therapy, economics of the preventive medicine and many other applications. The availability of good dynamic models have been providing means for simulation and design of novel control strategies in the context of biological events. This work concerns a particular model related to HIV infection dynamics which is used to allow a comparative evaluation of schemes for treatment of AIDS patients. The mathematical model adopted in this work was proposed by Nowak & Bangham, 1996 and describes the dynamics of viral concentration in terms of interaction with CD4 cells and the cytotoxic T lymphocytes, which are responsible for the defense of the organism. Two conceptually distinct techniques for drug therapy are analyzed: Open Loop Treatment, where a priori fixed dosage is prescribed and Closed Loop Treatment, where the doses are adjusted according to results obtained by laboratory analysis. Simulation results show that the Closed Loop Scheme can achieve improved quality of the treatment in terms of reduction in the viral load and quantity of administered drugs, but with the inconvenience related to the necessity of frequent and periodic laboratory analysis.
Resumo:
This paper presents a non-model based technique to detect, locate, and characterize structural damage by combining the impedance-based structural health monitoring technique with an artificial neural network. The impedance-based structural health monitoring technique, which utilizes the electromechanical coupling property of piezoelectric materials, has shown engineering feasibility in a variety of practical field applications. Relying on high frequency structural excitations (typically >30 kHz), this technique is very sensitive to minor structural changes in the near field of the piezoelectric sensors. In order to quantitatively assess the state of structures, multiple sets of artificial neural networks, which utilize measured electrical impedance signals for input patterns, were developed. By employing high frequency ranges and by incorporating neural network features, this technique is able to detect the damage in its early stage and to estimate the nature of damage without prior knowledge of the model of structures. The paper concludes with experimental examples, investigations on a massive quarter scale model of a steel bridge section and a space truss structure, in order to verify the performance of this proposed methodology.
Resumo:
We analyze the average performance of a general class of learning algorithms for the nondeterministic polynomial time complete problem of rule extraction by a binary perceptron. The examples are generated by a rule implemented by a teacher network of similar architecture. A variational approach is used in trying to identify the potential energy that leads to the largest generalization in the thermodynamic limit. We restrict our search to algorithms that always satisfy the binary constraints. A replica symmetric ansatz leads to a learning algorithm which presents a phase transition in violation of an information theoretical bound. Stability analysis shows that this is due to a failure of the replica symmetric ansatz and the first step of replica symmetry breaking (RSB) is studied. The variational method does not determine a unique potential but it allows construction of a class with a unique minimum within each first order valley. Members of this class improve on the performance of Gibbs algorithm but fail to reach the Bayesian limit in the low generalization phase. They even fail to reach the performance of the best binary, an optimal clipping of the barycenter of version space. We find a trade-off between a good low performance and early onset of perfect generalization. Although the RSB may be locally stable we discuss the possibility that it fails to be the correct saddle point globally. ©2000 The American Physical Society.
Resumo:
The application of agricultural fertilizers using variable rates along the field can be made through fertility maps previously elaborated or through real-time sensors. In most of the cases applies maps previously elaborated. These maps are identified from analyzes done in soil samples collected regularly (a sample for each field cell) or irregularly along the field. At the moment, mathematical interpolation methods such as nearest neighbor, local average, weighted inverse distance, contouring and kriging are used for predicting the variables involved with elaboration of fertility maps. However, some of these methods present deficiencies that can generate different fertility maps for a same data set. Moreover, such methods can generate inprecise maps to be used in precision farming. In this paper, artificial neural networks have been applied for elaboration and identification of precise fertility maps which can reduce the production costs and environmental impacts.
Resumo:
This paper presents models that can be used in the design of microstrip antennas for mobile communications. The antennas can be triangular or rectangular. The presented models are compared with deterministic and empirical models based on artificial neural networks (ANN) presented in the literature. The models are based on Perceptron Multilayer (PML) and Radial Basis Function (RBF) ANN. RBF based models presented the best results. Also, the models can be embedded in CAD systems, in order to design microstrip antennas for mobile communications.
Resumo:
The massless 4-point one-loop amplitude computation in the pure spinor formalism is shown to agree with the computation in the RNS formalism. © SISSA 2006.
Resumo:
We examined the variation in mitochondrial DNA by sequencing the D-loop region in wild and domestic (large-white breed) pigs, in hybrids between domestic and wild pigs, and in Monteiro pigs. A D-loop fragment of approximately 330 bp was amplified by PCR. Sequencing of DNA amplicons identified haplotypes previously described as European and Asian types. Monteiro pigs and wild pigs had European haplotypes and domestic pigs had both European and Asian haplotypes. ©FUNPEC-RP.