990 resultados para Milton Chaos Womb Intertextuality
Resumo:
The goal of this study is the analysis of the dynamical properties of financial data series from 32 worldwide stock market indices during the period 2000–2009 at a daily time horizon. Stock market indices are examples of complex interacting systems for which a huge amount of data exists. The methods and algorithms that have been explored for the description of physical phenomena become an effective background in the analysis of economical data. In this perspective are applied the classical concepts of signal analysis, Fourier transform and methods of fractional calculus. The results reveal classification patterns typical of fractional dynamical systems.
Resumo:
Animal locomotion is a complex process, involving the central pattern generators (neural networks, located in the spinal cord, that produce rhythmic patterns), the brainstem command systems, the steering and posture control systems and the top layer structures that decide which motor primitive is activated at a given time. Pinto and Golubitsky studied an integer CPG model for legs rhythms in bipeds. It is a four-coupled identical oscillators' network with dihedral symmetry. This paper considers a new complex order central pattern generator (CPG) model for locomotion in bipeds. A complex derivative Dα±jβ, with α, β ∈ ℜ+, j = √-1, is a generalization of the concept of an integer derivative, where α = 1, β = 0. Parameter regions where periodic solutions, identified with legs' rhythms in bipeds, occur, are analyzed. Also observed is the variation of the amplitude and period of periodic solutions with the complex order derivative.
Resumo:
Dissertação apresentada para a obtenção do grau de Doutor em Engenharia Química, especialidade Engenharia da Reacção Química, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
We consider a dynamical model of cancer growth including three interacting cell populations of tumor cells, healthy host cells and immune effector cells. For certain parameter choice, the dynamical system displays chaotic motion and by decreasing the response of the immune system to the tumor cells, a boundary crisis leading to transient chaotic dynamics is observed. This means that the system behaves chaotically for a finite amount of time until the unavoidable extinction of the healthy and immune cell populations occurs. Our main goal here is to apply a control method to avoid extinction. For that purpose, we apply the partial control method, which aims to control transient chaotic dynamics in the presence of external disturbances. As a result, we have succeeded to avoid the uncontrolled growth of tumor cells and the extinction of healthy tissue. The possibility of using this method compared to the frequently used therapies is discussed. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Biomédica
Resumo:
Fractional Calculus FC goes back to the beginning of the theory of differential calculus. Nevertheless, the application of FC just emerged in the last two decades, due to the progress in the area of chaos that revealed subtle relationships with the FC concepts. In the field of dynamical systems theory some work has been carried out but the proposed models and algorithms are still in a preliminary stage of establishment. Having these ideas in mind, the paper discusses FC in the study of system dynamics and control. In this perspective, this paper investigates the use of FC in the fields of controller tuning, legged robots, redundant robots, heat diffusion, and digital circuit synthesis.
Resumo:
The dynamics of catalytic networks have been widely studied over the last decades because of their implications in several fields like prebiotic evolution, virology, neural networks, immunology or ecology. One of the most studied mathematical bodies for catalytic networks was initially formulated in the context of prebiotic evolution, by means of the hypercycle theory. The hypercycle is a set of self-replicating species able to catalyze other replicator species within a cyclic architecture. Hypercyclic organization might arise from a quasispecies as a way to increase the informational containt surpassing the so-called error threshold. The catalytic coupling between replicators makes all the species to behave like a single and coherent evolutionary multimolecular unit. The inherent nonlinearities of catalytic interactions are responsible for the emergence of several types of dynamics, among them, chaos. In this article we begin with a brief review of the hypercycle theory focusing on its evolutionary implications as well as on different dynamics associated to different types of small catalytic networks. Then we study the properties of chaotic hypercycles with error-prone replication with symbolic dynamics theory, characterizing, by means of the theory of topological Markov chains, the topological entropy and the periods of the orbits of unimodal-like iterated maps obtained from the strange attractor. We will focus our study on some key parameters responsible for the structure of the catalytic network: mutation rates, autocatalytic and cross-catalytic interactions.
Resumo:
Defective interfering (DI) viruses are thought to cause oscillations in virus levels, known as the ‘Von Magnus effect’. Interference by DI viruses has been proposed to underlie these dynamics, although experimental tests of this idea have not been forthcoming. For the baculoviruses, insect viruses commonly used for the expression of heterologous proteins in insect cells, the molecular mechanisms underlying DI generation have been investigated. However, the dynamics of baculovirus populations harboring DIs have not been studied in detail. In order to address this issue, we used quantitative real-time PCR to determine the levels of helper and DI viruses during 50 serial passages of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) in Sf21 cells. Unexpectedly, the helper and DI viruses changed levels largely in phase, and oscillations were highly irregular, suggesting the presence of chaos. We therefore developed a simple mathematical model of baculovirus-DI dynamics. This theoretical model reproduced patterns qualitatively similar to the experimental data. Although we cannot exclude that experimental variation (noise) plays an important role in generating the observed patterns, the presence of chaos in the model dynamics was confirmed with the computation of the maximal Lyapunov exponent, and a Ruelle-Takens-Newhouse route to chaos was identified at decreasing production of DI viruses, using mutation as a control parameter. Our results contribute to a better understanding of the dynamics of DI baculoviruses, and suggest that changes in virus levels over passages may exhibit chaos.
Resumo:
Foi utilizada a exsangüineotransfusão, associada à soroterapia heteróloga específica e alcalinização urinaria, em um caso de acidente loxoscélico humano na cidade de São Paulo. A indicação da exsangüineotransfusão foi a intensa hemólise associada à gravidade e o iminente risco de morte.
Resumo:
A ocorrência de Clostridium difficile foi analisada em amostras de fezes de 175 crianças com idade variando de 1 a 35 meses. Para o isolamento primário do microrganismo foi empregado o meio de cultura seletivo diferencial "CCFA" (cicloserina-cefoxitina-frutose-agar). Num grupo de 67 crianças sem distúrbios gastrintestinais e que não estavam sob uso de agentes antimicrobianos a ocorrência do C. difficile foi de 22,4%, enquanto que num outro grupo de 28 crianças nas mesmas condições, porém, sob tratamento com antimicrobianos a ocorrência do microrganismo foi de 50%. Num terceiro grupo de 58 crianças com diarréia e sob antibiótico-terapia a ocorrência de C. difficile atingiu 13,8%. Este mesmo percentual foi encontrado num quarto grupo de 22 crianças com diarréia, porém, sem tratamento com agentes antimicrobianos. De um modo geral, os maiores índices de ocorrência de C. difficile foram encontrados em crianças com idade variando entre 1 a 12 meses (28,1%). Índices inferiores foram verificados entre crianças com idade superior a 1 ano. Outrossim, os resultados evidenciam que crianças com distúrbios gastrintestinais apresentam menor incidência deste microrganismo nas fezes. Por outro lado. não houve diferença estatísticamente significativa entre os grupos de crianças com e sem terapia antimicrobiana.
Resumo:
O imipenem é um novo antibiótico Beta lactâmico, carbapenêmico, altamente potente e com amplo espectro de atividade antimicrobiana. Com intuito de comprovar a eficácia "in vitro" deste fármaco em patógenos mais freqüentes em nosso meio, descrevem os autores, os resultados das provas de suscetibilidade por discos e/ou a correspondência por provas de diluição para determinação da concentração inibitória mínima (CIM) em 1230 cepas compreendendo 41 diferentes espécies bacterianas recém-isoladas, principalmente de pacientes hospitalares em 5 diferentes centros médicos de Sáo Paulo, Rio de Janeiro e Salvador. Nossos resultados preliminares com o antibiótico, em fase final de experimentação clínica e laboratorial, em nosso meio, foram muito promissores, com 96.79% de cepas suscetíveis pela prova do disco (10 μg de imipenem) e 92,31% de correspondência pela determinação do CIM (concentrações de até 4μg/ml). Das 9 espécies bacterianas mais freqüentemente isoladas, correspondendo a 1008 (82%) das 1230 cepas de nosso material, as sensibilidades pela prova do disco foram de 99% (E. coli), 93% (Pseudomonas aeruginosas), 87% (Staphylococcus aureus), 100% (Klebsiella pneumoniae), 98% (Klebsiella sp) e 100% (Streptococcus faecalis) com boa correspondência pela determinação do CIM até 8μg/ml; e 100% para o anaeróbio Bacteróides sp (CIM até 4μg/ml). Ressaltam os autores a eficácia "in vitro" contra patógenos hospitalares que apresentam elevados índices de resistência à grande maioria de antibióticos como o Pseudomonas aeruginosa e para anaeróbios, notadamente o Bacteróides sp.
Resumo:
Relatório de Estágio submetido à Escola Superior de Teatro e Cinema para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Teatro - especialização em Artes Performativas - Interpretação.
Resumo:
Relatório de Estágio submetido à Escola Superior de Teatro e Cinema para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Teatro - especialização em Design de Cena.
Resumo:
We study exotic patterns appearing in a network of coupled Chen oscillators. Namely, we consider a network of two rings coupled through a “buffer” cell, with Z3×Z5 symmetry group. Numerical simulations of the network reveal steady states, rotating waves in one ring and quasiperiodic behavior in the other, and chaotic states in the two rings, to name a few. The different patterns seem to arise through a sequence of Hopf bifurcations, period-doubling, and halving-period bifurcations. The network architecture seems to explain certain observed features, such as equilibria and the rotating waves, whereas the properties of the chaotic oscillator may explain others, such as the quasiperiodic and chaotic states. We use XPPAUT and MATLAB to compute numerically the relevant states.
Resumo:
In this article we provide homotopy solutions of a cancer nonlinear model describing the dynamics of tumor cells in interaction with healthy and effector immune cells. We apply a semi-analytic technique for solving strongly nonlinear systems – the Step Homotopy Analysis Method (SHAM). This algorithm, based on a modification of the standard homotopy analysis method (HAM), allows to obtain a one-parameter family of explicit series solutions. By using the homotopy solutions, we first investigate the dynamical effect of the activation of the effector immune cells in the deterministic dynamics, showing that an increased activation makes the system to enter into chaotic dynamics via a period-doubling bifurcation scenario. Then, by adding demographic stochasticity into the homotopy solutions, we show, as a difference from the deterministic dynamics, that an increased activation of the immune cells facilitates cancer clearance involving tumor cells extinction and healthy cells persistence. Our results highlight the importance of therapies activating the effector immune cells at early stages of cancer progression.