973 resultados para Memory immune response


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Salmonellosis is one of the most prevalent foodborne diseases worldwide. Food animals have been identified as reservoirs for nontyphoid Salmonella infections. in poultry, host-specific Salmonella infections cause fowl typhoid and pullorum diseases that produce economic losses in different parts of the world. Several measures have been used to prevent and control Salmonella infections in poultry, and vaccination is the most practical measure because it avoids contamination of poultry products and by-products and prevents disease in humans. Salmonella vaccines can decrease public health risk by reducing colonization and organ invasion, including invasion of reproductive tissues, and by diminishing fecal shedding and environmental contamination. We review available information on the host-specific and non-host-specific Salmonella serotypes found in poultry and the improved understanding of the pathogenesis of and immune responses to infection. We also include some approaches based on updated publications regarding killed and live attenuated vaccines and their immune mechanisms of protection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objective Immune responses against differentiated thyroid carcinomas (DTC) have long been recognized. We aimed to investigate the role of immune cell infiltration in the progression of DTC. Design We studied 398 patients 253 with papillary and 13 with follicular thyroid cancers, as well as 132 with nonmalignant tissues. Patients and measurements Immune cell infiltration was identified using CD3, CD4, CD8, CD20, CD68 and FoxP3 immunohistochemical markers. In addition, we assessed colocalization of CD4 and IL-17 to identify Th17 lymphocytic infiltration and colocalization of CD33 and CD11b to identify infiltration of myeloid-derived suppressor cells (MDSC). Results Immune cells infiltrated malignant tissues more often than benign lesions. The presence of chronic lymphocytic thyroiditis (CLT) concurrent to DTC, CD68+, CD4+, CD8+, CD20+, FoxP3+ and Th17 lymphocytes but not MDSCs was associated with clinical and pathological features of lower tumour aggressiveness and a more favourable patient outcome. A log-rank test confirmed an association between concurrent CLT, tumour-associated macrophage infiltration, and CD8+ lymphocytes and an increased in disease-free survival, suggesting that evidence of these immune reactions is associated with a favourable prognosis. Conclusion Our data suggest that the tumour or peri-tumoural microenvironment may act to modify the observed pattern of immune response. Immune cell infiltration and the presence of concurrent CLT helped characterize specific tumour histotypes associated with favourable prognostic features.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Adipose-derived mesenchymal stem cells (ADMSCs) display immunosuppressive properties, suggesting a promising therapeutic application in several autoimmune diseases, but their role in type 1 diabetes (T1D) remains largely unexplored. The aim of this study was to investigate the immune regulatory properties of allogeneic ADMSC therapy in T cell-mediated autoimmune diabetes in NOD mice. ADMSC treatment reversed the hyperglycemia of early-onset diabetes in 78% of diabetic NOD mice, and this effect was associated with higher serum insulin, amylin, and glucagon-like peptide 1 levels compared with untreated controls. This improved outcome was associated with downregulation of the CD4(+) Th1-biased immune response and expansion of regulatory T cells (Tregs) in the pancreatic lymph nodes. Within the pancreas, inflammatory cell infiltration and interferon-gamma levels were reduced, while insulin, pancreatic duodenal homeobox-1, and active transforming growth factor-beta 1 expression were increased. In vitro, ADMSCs induced the expansion/proliferation of Tregs in a cell contact-dependent manner mediated by programmed death ligand 1. In summary, ADMSC therapy efficiently ameliorates autoimmune diabetes pathogenesis in diabetic NOD mice by attenuating the Th1 immune response concomitant with the expansion/proliferation of Tregs, thereby contributing to the maintenance of functional beta-cells. Thus, this study may provide a new perspective for the development of ADMSC-based cellular therapies for T1D. Diabetes 61:2534-2545, 2012

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The innate and adaptive immune responses in neonates are usually functionally impaired when compared with their adult counterparts. The qualitative and quantitative differences in the neonatal immune response put them at risk for the development of bacterial and viral infections, resulting in increased mortality. Newborns often exhibit decreased production of Th1-polarizing cytokines and are biased toward Th2-type responses. Studies aimed at understanding the plasticity of the immune response in the neonatal and early infant periods or that seek to improve neonatal innate immune function with adjuvants or special formulations are crucial for preventing the infectious disease burden in this susceptible group. Considerable studies focused on identifying potential immunomodulatory therapies have been performed in murine models. This article highlights the strategies used in the emerging field of immunomodulation in bacterial and viral pathogens, focusing on preclinical studies carried out in animal models with particular emphasis on neonatal-specific immune deficits.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Evaluation of: Rodriguez D, Gonzalez-Aseguinolaza G, Rodriguez JR et al. Vaccine efficacy against malaria by the combination of porcine parvovirus-like particles and vaccinia virus vectors expressing CS of Plasmodium. PLoS ONE 7(4), e34445 (2012). Recently, a vaccine against malaria was successfully tested in a human Phase III trial. The efficacy of this vaccine formulation, based on the Plasmodium falciparum circumsporozoite protein, was approximately 50% and correlated with the presence of antibodies specific to the infective stages of the malaria parasites. Different strategies are being pursued to improve vaccine efficacy levels. One such strategy is the induction of specific cytotoxic T cells that can destroy the intracellular hepatocyte stages of the malaria parasite. In this study, a novel vaccination protocol was developed to elicit strong immune responses mediated by CD8(+) cytotoxic cells specific to the circumsporozoite protein. As proof-of-concept, the authors used the rodent malaria Plasmodium yoelii parasite. The vaccination strategy consisted of a heterologous prime-boost vaccination regimen involving porcine parvovirus-like particles for priming and the modified vaccinia virus Ankara for the booster immunization, both of which expressed the immunodominant CD8 epitope of the P. yoelii circumsporozoite protein. Results from this experimental model were extremely meaningful. This vaccination strategy led to a significant T-cell immune response mediated by CD8(+) multifunctional T effector and effector-memory cells. However, most importantly for the malaria vaccine development was the fact that following a sporozoite challenge, immunized mice eliminated more than 97% of the malaria parasites during the hepatocyte stages. These results confirm and extend a vast body of knowledge showing that a heterologous prime-boost vaccination strategy can elicit strong CD8(+) T-cell-mediated protective immunity and may increase the efficacy of malaria vaccines.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abstract Background The naturally-acquired immune response to Plasmodium vivax variant antigens (VIR) was evaluated in individuals exposed to malaria and living in different endemic areas for malaria in the north of Brazil. Methods Seven recombinant proteins representing four vir subfamilies (A, B, C, and E) obtained from a single patient from the Amazon Region were expressed in Escherichia coli as soluble glutathione S-transferase fusion proteins. The different recombinant proteins were compared by ELISA with regard to the recognition by IgM, IgG, and IgG subclass of antibodies from 200 individuals with patent infection. Results The frequency of individuals that presented antibodies anti-VIR (IgM plus IgG) during the infection was 49%. The frequencies of individuals that presented IgM or IgG antibodies anti-VIR were 29.6% or 26.0%, respectively. The prevalence of IgG antibodies against recombinant VIR proteins was significantly lower than the prevalence of antibodies against the recombinant proteins representing two surface antigens of merozoites of P. vivax: AMA-1 and MSP119 (57.0% and 90.5%, respectively). The cellular immune response to VIR antigens was evaluated by in vitro proliferative assays in mononuclear cells of the individuals recently exposed to P. vivax. No significant proliferative response to these antigens was observed when comparing malaria-exposed to non-exposed individuals. Conclusion This study provides evidence that there is a low frequency of individuals responding to each VIR antigens in endemic areas of Brazil. This fact may explain the host susceptibility to new episodes of the disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The objectives of this study were to determine if protein-energy malnutrition (PEM) could affect the hematologic response to lipopolysaccharide (LPS), the interleukin-1β (IL-1β) production, leukocyte migration, and blood leukocyte expression of CD11a/CD18. Two-month-old male Swiss mice were submitted to PEM (N = 30) with a low-protein diet (14 days) containing 4% protein, compared to 20% protein in the control group (N = 30). The total cellularity of blood, bone marrow, spleen, and bronchoalveolar lavage evaluated after the LPS stimulus indicated reduced number of total cells in all compartments studied and different kinetics of migration in malnourished animals. The in vitro migration assay showed reduced capacity of migration after the LPS stimulus in malnourished animals (45.7 ± 17.2 x 10(4) cells/mL) compared to control (69.6 ± 7.1 x 10(4) cells/mL, P ≤ 0.05), but there was no difference in CD11a/CD18 expression on the surface of blood leukocytes. In addition, the production of IL-1β in vivo after the LPS stimulus (180.7 pg·h-1·mL-1), and in vitro by bone marrow and spleen cells (41.6 ± 15.0 and 8.3 ± 4.0 pg/mL) was significantly lower in malnourished animals compared to control (591.1 pg·h-1·mL-1, 67.0 ± 23.0 and 17.5 ± 8.0 pg/mL, respectively, P ≤ 0.05). The reduced expression of IL-1β, together with the lower number of leukocytes in the central and peripheral compartments, different leukocyte kinetics, and reduced leukocyte migration capacity are factors that interfere with the capacity to mount an adequate immune response, being partly responsible for the immunodeficiency observed in PEM.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The mechanism by which protective immunity to Plasmodium is lost in the absence of continued exposure to this parasite has yet to be fully elucidated. It has been recently shown that IFN-γ produced during human and murine acute malaria primes the immune response to TLR agonists. In this study, we investigated whether IFN-γ-induced priming is important to maintain long-term protective immunity against Plasmodium chabaudi AS malaria. On day 60 postinfection, C57BL/6 mice still had chronic parasitemia and efficiently controlled homologous and heterologous (AJ strain) challenge. The spleens of chronic mice showed augmented numbers of effector/effector memory (TEM) CD4(+) cells, which is associated with increased levels of IFN-γ-induced priming (i.e., high expression of IFN-inducible genes and TLR hyperresponsiveness). After parasite elimination, IFN-γ-induced priming was no longer detected and protective immunity to heterologous challenge was mostly lost with >70% mortality. Spontaneously cured mice had high serum levels of parasite-specific IgG, but effector T/TEM cell numbers, parasite-driven CD4(+) T cell proliferation, and IFN-γ production were similar to noninfected controls. Remarkably, the priming of cured mice with low doses of IFN-γ rescued TLR hyperresponsiveness and the capacity to control heterologous challenge, increasing the TEM cell population and restoring the CD4(+) T cell responses to parasites. Contribution of TLR signaling to the CD4(+) T cell responses in chronic mice was supported by data obtained in mice lacking the MyD88 adaptor. These results indicate that IFN-γ-induced priming is required to maintain protective immunity against P. chabaudi and aid in establishing the molecular basis of strain-transcending immunity in human malaria.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A decline in cognitive ability is a typical feature of the normal aging process, and of neurodegenerative disorders such as Alzheimer’s, Parkinson’s and Huntington’s diseases. Although their etiologies differ, all of these disorders involve local activation of innate immune pathways and associated inflammatory cytokines. However, clinical trials of anti-inflammatory agents in neurodegenerative disorders have been disappointing, and it is therefore necessary to better understand the complex roles of the inflammatory process in neurological dysfunction. The dietary phytochemical curcumin can exert anti-inflammatory, antioxidant and neuroprotective actions. Here we provide evidence that curcumin ameliorates cognitive deficits associated with activation of the innate immune response by mechanisms requiring functional tumor necrosis factor α receptor 2 (TNFR2) signaling. In vivo, the ability of curcumin to counteract hippocampusdependent spatial memory deficits, to stimulate neuroprotective mechanisms such as upregulation of BDNF, to decrease glutaminase levels, and to modulate N-methyl- D –aspartate receptor levels was absent in mice lacking functional TNFRs. Curcumin treatment protected cultured neurons against glutamate-induced excitotoxicity by a mechanism requiring TNFR2 activation. Our results suggest the possibility that therapeutic approaches against cognitive decline designed to selectively enhance TNFR2 signaling are likely to be more beneficial than the use of anti-inflammatory drugs per se.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ocean temperatures are rising throughout the world, making it necessary to evaluate the impact of these temperature changes on sea urchins, which are well-known bioindicators. This study evaluated the effect of an increase in temperature on the immune response of the subtidal Lytechinus variegatus and the intertidal Echinometra lucunter sea urchins. Both species were exposed to 20 (control), 25 and 30 °C temperatures for 24 h, 2, 7 and 14 days. Counting of coelomocytes and assays on the phagocytic response, adhesion and spreading of coelomocytes were performed. Red and colorless sphere cells were considered biomarkers for heat stress. Moreover, a significant decrease in the phagocytic indices and a decrease in both cell adhesion and cell spreading were observed at 25 and 30 °C for L. variegatus. For E. lucunter, the only alteration observed was for the cell proportions. This report shows how different species of sea urchins respond immunologically to rising temperatures

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Antibodies have an essential role in the acquired immune response against blood stage P. falciparum infection. Although several antigens have been identified as important antibody targets, it is still elusive which antigens have to be recognized for clinical protection. Herein, we analyzed antibodies from plasmas from symptomatic or asymptomatic individuals living in the same geographic area in the Western Amazon, measuring their recognition of multiple merozoite antigens. METHODS: Specific fragments of genes encoding merozoite proteins AMA1 and members of MSP and EBL families from circulating P. falciparum field isolates present in asymptomatic and symptomatic patients were amplified by PCR. After cloning and expression of different versions of the antigens as recombinant GST-fusion peptides, we tested the reactivity of patients' plasmas by ELISA and the presence of IgG subclasses in the most reactive plasmas. RESULTS: 11 out of 24 recombinant antigens were recognized by plasmas from either symptomatic or asymptomatic infections. Antibodies to MSP9 (X2(DF=1) = 9.26/p = 0.0047) and MSP5 (X2(DF=1) = 8.29/p = 0.0069) were more prevalent in asymptomatic individuals whereas the opposite was observed for MSP1 block 2-MAD20 (X2(DF=1) = 6.41/p = 0.0206, Fisher's exact test). Plasmas from asymptomatic individuals reacted more intensely against MSP4 (U = 210.5, p < 0.03), MSP5 (U = 212, p < 0.004), MSP9 (U = 189.5, p < 0.002) and EBA175 (U = 197, p < 0.014, Mann-Whitney's U test). IgG1 and IgG3 were predominant for all antigens, but some patients also presented with IgG2 and IgG4. The recognition of MSP5 (OR = 0.112, IC95% = 0.021-0.585) and MSP9 (OR = 0.125, IC95% = 0.030-0.529, cross tab analysis) predicted 8.9 and 8 times less chances, respectively, to present symptoms. Higher antibody levels against MSP5 and EBA175 were associated by odds ratios of 9.4 (IC95% = 1.29-69.25) and 5.7 (IC95% = 1.12-29.62, logistic regression), respectively, with an asymptomatic status. CONCLUSIONS: Merozoite antigens were targets of cytophilic antibodies and antibodies against MSP5, MSP9 and EBA175 were independently associated with decreased symptoms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

INTRODUCTION: With the aim of searching genetic factors associated with the response to an immune treatment based on autologous monocyte-derived dendritic cells pulsed with autologous inactivated HIV, we performed exome analysis by screening more than 240,000 putative functional exonic variants in 18 HIV-positive Brazilian patients that underwent the immune treatment. METHODS: Exome analysis has been performed using the ILLUMINA Infinium HumanExome BeadChip. zCall algorithm allowed us to recall rare variants. Quality control and SNP-centred analysis were done with GenABEL R package. An in-house implementation of the Wang method permitted gene-centred analysis. RESULTS: CCR4-NOT transcription complex, subunit 1 (CNOT1) gene (16q21), showed the strongest association with the modification of the response to the therapeutic vaccine (p=0.00075). CNOT1 SNP rs7188697 A/G was significantly associated with DC treatment response. The presence of a G allele indicated poor response to the therapeutic vaccine (p=0.0031; OR=33.00; CI=1.74-624.66), and the SNP behaved in a dominant model (A/A vs. A/G+G/G p=0.0009; OR=107.66; 95% CI=3.85-3013.31), being the A/G genotype present only in weak/transient responders, conferring susceptibility to poor response to the immune treatment. DISCUSSION: CNOT1 is known to be involved in the control of mRNA deadenylation and mRNA decay. Moreover, CNOT1 has been recently described as being involved in the regulation of inflammatory processes mediated by tristetraprolin (TTP). The TTP-CCR4-NOT complex (CNOT1 in the CCR4-NOT complex is the binding site for TTP) has been reported as interfering with HIV replication, through post-transcriptional control. Therefore, we can hypothesize that genetic variation occurring in the CNOT1 gene could impair the TTP-CCR4-NOT complex, thus interfering with HIV replication and/or host immune response. CONCLUSIONS: Being aware that our findings are exclusive to the 18 patients studied with a need for replication, and that the genetic variant of CNOT1 gene, localized at intron 3, has no known functional effect, we propose a novel potential candidate locus for the modulation of the response to the immune treatment, and open a discussion on the necessity to consider the host genome as another potential variant to be evaluated when designing an immune therapy study

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Insects encounter many microorganisms in nature and to survive they have developed counter measures against the invading pathogens. In Drosophila melanogaster research on insect immunity has mainly been focused on infections by bacteria and fungi. We have explored the immune response against natural infections of the parasite Octosporea muscaedomesticae and the Drosophila C virus as compared to natural infections of bacteria and fungi. By using Affymetrix Drosophila GeneChips, we were able to obtain 48 genes uniquely induced after parasitic infection. It was also clearly shown that natural infections led to different results than when injecting the pathogens. In order to search for the ultimate role of the lepidopteran protein hemolin, we used RNA interference (RNAi). We could show that injection of double stranded RNA (dsRNA) of Hemolin in pupae of Hyalophora cecropia led to embryonic malformation and lethality and that there was a sex specific difference. We continued the RNAi investigation of hemolin in another lepidopteran species, Antheraea pernyi, and discovered that hemolin was induced by dsRNA per se. A similar induction of hemolin was seen after infection with baculovirus and we therefore performed in vivo experiments on baculovirus infected pupae. We could show that a low dose of dsHemolin prolonged the period before the A. pernyi pupae showed any symptoms of infection, while a high dose led to a more rapid onset of symptoms. By performing in silico analysis of the hemolin sequence from A. pernyi in comparison with other Hemolin sequences, it was possible to select a number of sites that either by being strongly conserved or variable could be important targets for future studies of hemolin function.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Domoinsäure ist ein von mehreren Arten mariner Kieselalgen der Gattung Pseudonitzschia produziertes Toxin, welches während einer Algenblüte in Molluscen wie z.B. der Miesmuschel Mytilus sp. akkumuliert werden kann. Beim Verzehr solch kontaminierter Muscheln können sowohl beim Menschen als auch bei Tieren erhebliche Vergiftungserscheinungen auftreten, die von Übelkeit, Kopfschmerzen und Orientierungsstörungen bis hin zum Verlust des Kurzzeitgedächtnisses (daher auch als amnesic shellfish poisoning bekannt) reichen und in einigen Fällen tödlich enden. rnDie heute gängigen Methoden zur Detektion von Domoinsäure in Muschelgewebe wie Flüssigkeitschromatographie und Maus-Bioassay sind zeit- und kostenintensiv bzw. in Anbetracht einer Verbesserung des Tierschutzes aus ethischer Sicht nicht zu vertreten. Immunologische Testsysteme stellen eine erstrebenswerte Alternative dar, da sie sich durch eine vergleichsweise einfache Handhabung, hohe Selektivität und Reproduzierbarkeit auszeichnen.rnDas Ziel der vorliegenden Arbeit war es, ein solches immunologisches Testsystem zur Detektion von Domoinsäure zu entwickeln. Hierfür wurden zunächst Antikörper gegen Domoinsäure gewonnen, wofür das Toxin wiederum als erstes über die Carbodiimid-Methode an das Trägerprotein keyhole limpet hemocyanin (KLH) gekoppelt wurde, um eine Immunantwort auslösen zu können. Kaninchen und Mäuse wurden mit KLH-DO-Konjugaten nach vorgegebenen Immunisierungsschemata immunisiert. Nach vier Blutabnahmen zeigte das polyklonale Kaninchenantiserum eine ausreichend hohe Sensitivität zum Antigen; das nachfolgende Detektionssystem wurde mit Hilfe dieses polyklonalen Antikörpers aufgebaut. Zwar ist es gegen Ende der Arbeit auch gelungen, einen spezifischen monoklonalen Antikörper aus der Maus zu gewinnen, jedoch konnte dieser aus zeitlichen Gründen nicht mehr im Detektionssystem etabliert werden, was durchaus wünschenswert gewesen wäre. rnWeiterhin wurde Domoinsäure im Zuge der Entwicklung eines neuartigen Testsystems an die Trägerproteine Ovalbumin, Trypsininhibitor und Casein sowie an Biotin konjugiert. Die Kopplungserfolge wurden im ELISA, Western Blot bzw. Dot Blot nachgewiesen. Die Ovalbumin-gekoppelte sowie die biotinylierte Domoinsäure dienten im Folgenden als die zu messenden Größen in den Detektionsassays- die in einer zu untersuchenden Probe vorhandende, kompetitierende Domoinsäure wurde somit indirekt nachgewiesen. rnDer zulässige Höchstwert für Domoinsäure liegt bei 20 µg/g Muschelgewebe. Sowohl mit Biotin-DO als auch mit OVA-DO als den zu messenden Größen waren Domoinsäurekonzentrationen unterhalb dieses Grenzwertes nachweisbar; allerdings erwies sich der Aufbau mit Biotin-DO um das ca. 20-fache empfindlicher als jener mit OVA-DO. rnDie in dieser Arbeit präsentierten Ergebnisse könnten als Grundlage zur Etablierung eines kommerzialisierbaren immunologischen Testsystems zur Detektion von Domoinsäure und anderen Biotoxinen dienen. Nach erfolgreicher Validierung wäre ein solches Testsystem in seiner Handhabung einfacher als die gängige Flüssigkeitschromatographie und besser reproduzierbar als der Maus-Bioassay.rn

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the first part of my thesis I studied the mechanism of initiation of the innate response to HSV-1. Innate immune response is the first line of defense set up by the cell to counteract pathogens infection and it is elicited by the activation of a number of membrane or intracellular receptors and sensors, collectively indicated as PRRs, Patter Recognition Receptors. We reported that the HSV pathogen-associated molecular patterns (PAMP) that activate Toll-like receptor 2 (TLR2) and lead to the initiation of innate response are the virion glycoproteins gH/gL and gB, which constitute the conserved fusion core apparatus across the Herpesvirus. Specifically gH/gL is sufficient to initiate a signaling cascade which leads to NF-κB activation. Then, by gain and loss-of-function approaches, we found that αvβ3-integrin is a sensor of and plays a crucial role in the innate defense against HSV-1. We showed that αvβ3-integrin signals through a pathway that concurs with TLR2, affects activation/induction of interferons type 1, NF-κB, and a polarized set of cytokines and receptors. Thus, we demonstrated that gH/gL is sufficient to induce IFN1 and NF-κB via this pathway. From these data, we proposed that αvβ3-integrin is considered a class of non-TLR pattern recognition receptors. In the second part of my thesis I studied the capacity of human mesenchymal stromal cells isolated by fetal membranes (FM-hMSCs) to be used as carrier cells for the delivery of retargeted R-LM249 virus. The use of systemically administrated carrier cells to deliver oncolytic viruses to tumoral targets is a promising strategy in oncolytic virotherapy. We observed that FM-hMSCs can be infected by R-LM249 and we optimized the infection condition; then we demonstrate that stromal cells sustain the replication of retargeted R-LM249 and spread it to target tumoral cells. From these preliminary data FM-hMSCs resulted suitable to be used as carrier cells