865 resultados para Membrane lipid composition
Resumo:
The development and characterization of biomolecule sensor formats based on the optical technique Surface Plasmon Resonance (SPR) Spectroscopy and electrochemical methods were investigated. The study can be divided into two parts of different scope. In the first part new novel detection schemes for labeled targets were developed on the basis of the investigations in Surface-plamon Field Enhanced Spectroscopy (SPFS). The first one is SPR fluorescence imaging formats, Surface-plamon Field Enhanced Fluorescence Microscopy (SPFM). Patterned self assembled monolayers (SAMs) were prepared and used to direct the spatial distribution of biomolecules immobilized on surfaces. Here the patterned monolayers would serve as molecular templates to secure different biomolecules to known locations on a surface. The binding processed of labeled target biomolecules from solution to sensor surface were visually and kinetically recorded by the fluorescence microscope, in which fluorescence was excited by the evanescent field of propagating plasmon surface polaritons. The second format which also originates from SPFS technique, Surface-plamon Field Enhanced Fluorescence Spectrometry (SPFSm), concerns the coupling of a fluorometry to normal SPR setup. A spectrograph mounted in place of photomultiplier or microscope can provide the information of fluorescence spectrum as well as fluorescence intensity. This study also firstly demonstrated the analytical combination of surface plasmon enhanced fluorescence detection with analyte tagged by semiconducting nano- crystals (QDs). Electrochemically addressable fabrication of DNA biosensor arrays in aqueous environment was also developed. An electrochemical method was introduced for the directed in-situ assembly of various specific oligonucleotide catcher probes onto different sensing elements of a multi-electrode array in the aqueous environment of a flow cell. Surface plasmon microscopy (SPM) is utilized for the on-line recording of the various functionalization steps. Hybridization reactions between targets from solution to the different surface-bound complementary probes are monitored by surface-plasmon field-enhanced fluorescence microscopy (SPFM) using targets that are either labeled with organic dyes or with semiconducting quantum dots for color-multiplexing. This study provides a new approach for the fabrication of (small) DNA arrays and the recording and quantitative evaluation of parallel hybridization reactions. In the second part of this work, the ideas of combining the SP optical and electrochemical characterization were extended to tethered bilayer lipid membrane (tBLM) format. Tethered bilayer lipid membranes provide a versatile model platform for the study of many membrane related processes. The thiolipids were firstly self-assembled on ultraflat gold substrates. Fusion of the monolayers with small unilamellar vesicles (SUVs) formed the distal layer and the membranes thus obtained have the sealing properties comparable to those of natural membranes. The fusion could be monitored optically by SPR as an increase in reflectivity (thickness) upon formation of the outer leaflet of the bilayer. With EIS, a drop in capacitance and a steady increase in resistance could be observed leading to a tightly sealing membrane with low leakage currents. The assembly of tBLMs and the subsequent incorporation of membrane proteins were investigated with respect to their potential use as a biosensing system. In the case of valinomycin the potassium transport mediated by the ion carrier could be shown by a decrease in resistance upon increasing potassium concentration. Potential mediation of membrane pores could be shown for the ion channel forming peptide alamethicin (Alm). It was shown that at high positive dc bias (cis negative) Alm channels stay at relatively low conductance levels and show higher permeability to potassium than to tetramethylammonium. The addition of inhibitor amiloride can partially block the Alm channels and results in increase of membrane resistance. tBLMs are robust and versatile model membrane architectures that can mimic certain properties of biological membranes. tBLMs with incorporated lipopolysaccharide (LPS) and lipid A mimicking bacteria membranes were used to probe the interactions of antibodies against LPS and to investigate the binding and incorporation of the small antimicrobial peptide V4. The influence of membrane composition and charge on the behavior of V4 was also probed. This study displays the possibility of using tBLM platform to record and valuate the efficiency or potency of numerous synthesized antimicrobial peptides as potential drug candidates.
Resumo:
Structure and folding of membrane proteins are important issues in molecular and cell biology. In this work new approaches are developed to characterize the structure of folded, unfolded and partially folded membrane proteins. These approaches combine site-directed spin labeling and pulse EPR techniques. The major plant light harvesting complex LHCIIb was used as a model system. Measurements of longitudinal and transversal relaxation times of electron spins and of hyperfine couplings to neighboring nuclei by electron spin echo envelope modulation(ESEEM) provide complementary information about the local environment of a single spin label. By double electron electron resonance (DEER) distances in the nanometer range between two spin labels can be determined. The results are analyzed in terms of relative water accessibilities of different sites in LHCIIb and its geometry. They reveal conformational changes as a function of micelle composition. This arsenal of methods is used to study protein folding during the LHCIIb self assembly and a spatially and temporally resolved folding model is proposed. The approaches developed here are potentially applicable for studying structure and folding of any protein or other self-assembling structure if site-directed spin labeling is feasible and the time scale of folding is accessible to freeze-quench techniques.
Resumo:
Membrane proteins play a major role in every living cell. They are the key factors in the cell’s metabolism and in other functions, for example in cell-cell interaction, signal transduction, and transport of ions and nutrients. Cytochrome c oxidase (CcO), as one of the membrane proteins of the respiratory chain, plays a significant role in the energy transformation of higher organisms. CcO is a multi centered heme protein, utilizing redox energy to actively transport protons across the mitochondrial membrane. One aim of this dissertation is to investigate single steps in the mechanism of the ion transfer process coupled to electron transfer, which are not fully understood. The protein-tethered bilayer lipid membrane is a general approach to immobilize membrane proteins in an oriented fashion on a planar electrode embedded in a biomimetic membrane. This system enables the combination of electrochemical techniques with surface enhanced resonance Raman (SERRS), surface enhanced reflection absorption infrared (SEIRAS), and surface plasmon spectroscopy to study protein mediated electron and ion transport processes. The orientation of the enzymes within the surface confined architecture can be controlled by specific site-mutations, i.e. the insertion of a poly-histidine tag to different subunits of the enzyme. CcO can, thus, be oriented uniformly with its natural electron pathway entry pointing either towards or away from the electrode surface. The first orientation allows an ultra-fast direct electron transfer(ET) into the protein, not provided by conventional systems, which can be leveraged to study intrinsic charge transfer processes. The second orientation permits to study the interaction with its natural electron donor cytochrome c. Electrochemical and SERR measurements show conclusively that the redox site structure and the activity of the surface confined enzyme are preserved. Therefore, this biomimetic system offers a unique platform to study the kinetics of the ET processes in order to clarify mechanistic properties of the enzyme. Highly sensitive and ultra fast electrochemical techniques allow the separation of ET steps between all four redox centres including the determination of ET rates. Furthermore, proton transfer coupled to ET could be directly measured and discriminated from other ion transfer processes, revealing novel mechanistic information of the proton transfer mechanism of cytochrome c oxidase. In order to study the kinetics of the ET inside the protein, including the catalytic center, time resolved SEIRAS and SERRS measurements were performed to gain more insight into the structural and coordination changes of the heme environment. The electrical behaviour of tethered membrane systems and membrane intrinsic proteins as well as related charge transfer processes were simulated by solving the respective sets of differential equations, utilizing a software package called SPICE. This helps to understand charge transfer processes across membranes and to develop models that can help to elucidate mechanisms of complex enzymatic processes.
Resumo:
A novel nanosized and addressable sensing platform based on membrane coated plasmonic particles for detection of protein adsorption using dark field scattering spectroscopy of single particles has been established. To this end, a detailed analysis of the deposition of gold nanorods on differently functionalized substrates is performed in relation to various factors (such as the pH, ionic strength, concentration of colloidal suspension, incubation time) in order to find the optimal conditions for obtaining a homogenous distribution of particles at the desired surface number density. The possibility of successfully draping lipid bilayers over the gold particles immobilized on glass substrates depends on the careful adjustment of parameters such as membrane curvature and adhesion properties and is demonstrated with complementary techniques such as phase imaging AFM, fluorescence microscopy (including FRAP) and single particle spectroscopy. The functionality and sensitivity of the proposed sensing platform is unequivocally certified by the resonance shifts of the plasmonic particles that were individually interrogated with single particle spectroscopy upon the adsorption of streptavidin to biotinylated lipid membranes. This new detection approach that employs particles as nanoscopic reporters for biomolecular interactions insures a highly localized sensitivity that offers the possibility to screen lateral inhomogeneities of native membranes. As an alternative to the 2D array of gold nanorods, short range ordered arrays of nanoholes in optically transparent gold films or regular arrays of truncated tetrahedron shaped particles are built by means of colloidal nanolithography on transparent substrates. Technical issues mainly related to the optimization of the mask deposition conditions are successfully addressed such that extended areas of homogenously nanostructured gold surfaces are achieved. Adsorption of the proteins annexin A1 and prothrombin on multicomponent lipid membranes as well as the hydrolytic activity of the phospholipase PLA2 were investigated with classical techniques such as AFM, ellipsometry and fluorescence microscopy. At first, the issues of lateral phase separation in membranes of various lipid compositions and the dependency of the domains configuration (sizes and shapes) on the membrane content are addressed. It is shown that the tendency for phase segregation of gel and fluid phase lipid mixtures is accentuated in the presence of divalent calcium ions for membranes containing anionic lipids as compared to neutral bilayers. Annexin A1 adsorbs preferentially and irreversibly on preformed phosphatidylserine (PS) enriched lipid domains but, dependent on the PS content of the bilayer, the protein itself may induce clustering of the anionic lipids into areas with high binding affinity. Corroborated evidence from AFM and fluorescence experiments confirm the hypothesis of a specifically increased hydrolytic activity of PLA2 on the highly curved regions of membranes due to a facilitated access of lipase to the cleavage sites of the lipids. The influence of the nanoscale gold surface topography on the adhesion of lipid vesicles is unambiguously demonstrated and this reveals, at least in part, an answer for the controversial question existent in the literature about the behavior of lipid vesicles interacting with bare gold substrates. The possibility of formation monolayers of lipid vesicles on chemically untreated gold substrates decorated with gold nanorods opens new perspectives for biosensing applications that involve the radiative decay engineering of the plasmonic particles.
Resumo:
Membranen spielen eine essentielle Rolle bei vielen wichtigen zellulären Prozessen. Sie ermöglichen die Erzeugung von chemischen Gradienten zwischen dem Zellinneren und der Umgebung. Die Zellmembran übernimmt wesentliche Aufgaben bei der intra- und extrazellulären Signalweiterleitung und der Adhäsion an Oberflächen. Durch Prozesse wie Endozytose und Exozytose werden Stoffe in oder aus der Zelle transportiert, eingehüllt in Vesikel, welche aus der Zellmembran geformt werden. Zusätzlich bietet sie auch Schutz für das Zellinnere. Der Hauptbestandteil einer Zellmembran ist die Lipiddoppelschicht, eine zweidimensionale fluide Matrix mit einer heterogenen Zusammensetzung aus unterschiedlichen Lipiden. In dieser Matrix befinden sich weitere Bausteine, wie z.B. Proteine. An der Innenseite der Zelle ist die Membran über Ankerproteine an das Zytoskelett gekoppelt. Dieses Polymernetzwerk erhöht unter anderem die Stabilität, beeinflusst die Form der Zelle und übernimmt Funktionenrnbei der Zellbewegung. Zellmembranen sind keine homogenen Strukturen, je nach Funktion sind unterschiedliche Lipide und Proteine in mikrsokopischen Domänen angereichert.Um die grundlegenden mechanischen Eigenschaften der Zellmembran zu verstehen wurde im Rahmen dieser Arbeit das Modellsystem der porenüberspannenden Membranen verwendet.Die Entwicklung der porenüberspannenden Membranen ermöglicht die Untersuchung von mechanischen Eigenschaften von Membranen im mikro- bis nanoskopischen Bereich mit rasterkraftmikroskopischen Methoden. Hierbei bestimmen Porosität und Porengröße des Substrates die räumliche Auflösung, mit welcher die mechanischen Parameter untersucht werdenrnkönnen. Porenüberspannende Lipiddoppelschichten und Zellmembranen auf neuartigen porösen Siliziumsubstraten mit Porenradien von 225 nm bis 600 nm und Porositäten bis zu 30% wurden untersucht. Es wird ein Weg zu einer umfassenden theoretischen Modellierung der lokalen Indentationsexperimente und der Bestimmung der dominierenden energetischen Beiträge in der Mechanik von porenüberspannenden Membranen aufgezeigt. Porenüberspannende Membranen zeigen eine linear ansteigende Kraft mit zunehmender Indentationstiefe. Durch Untersuchung verschiedener Oberflächen, Porengrößen und Membranen unterschiedlicher Zusammensetzung war es für freistehende Lipiddoppelschichten möglich, den Einfluss der Oberflächeneigenschaften und Geometrie des Substrates, sowie der Membranphase und des Lösungsmittels auf die mechanischen Eigenschaften zu bestimmen. Es ist möglich, die experimentellen Daten mit einem theoretischen Modell zu beschreiben. Hierbei werden Parameter wie die laterale Spannung und das Biegemodul der Membran bestimmt. In Abhängigkeit der Substrateigenschaften wurden für freitragende Lipiddoppelschichten laterale Spannungen von 150 μN/m bis zu 31 mN/m gefunden für Biegemodulde zwischen 10^(−19) J bis 10^(−18) J. Durch Kraft-Indentations-Experimente an porenüberspannenden Zellmembranen wurde ein Vergleich zwischen dem Modell der freistehenden Lipiddoppelschichten und nativen Membranen herbeigeführt. Die lateralen Spannungen für native freitragende Membranen wurden zu 50 μN/m bestimmt. Weiterhin konnte der Einfluss des Zytoskeletts und der extrazellulä-rnren Matrix auf die mechanischen Eigenschaften bestimmt und innerhalb eines basolateralen Zellmembranfragments kartiert werden, wobei die Periodizität und der Porendurchmesser des Substrates das räumliche Auflösungsvermögen bestimmen. Durch Fixierung der freistehenden Zellmembran wurde das Biegemodul der Membran um bis zu einem Faktor 10 erhöht. Diese Arbeit zeigt wie lokal aufgelöste, mechanische Eigenschaften mittels des Modellsystems der porenüberspannenden Membranen gemessen und quantifiziert werden können. Weiterhin werden die dominierenden energetischen Einflüsse diskutiert, und eine Vergleichbarkeit zurnnatürlichen Membranen hergestellt.rn
Resumo:
Nowadays it is requested more investigations on alternative rearing systems that are able to improve poultry welfare and to warrant high-quality and safe meat products. This thesis work was focused on the evaluation of the oxidative stability of poultry meats, obtained with different rearing systems, diets (supplemented with bioactive compounds), and packaging conditions. The thesis work was divided into the following parts: - Evaluation of the effects of different rearing systems on the quality, fatty acid composition and oxidative stability of poultry thigh and breast meat belonging to different product categories (“rotisserie” and “cut-up” carcasses); - Evaluation of the effects of different rearing systems and packaging conditions on the shelf-life of poultry thigh meat stored at 4°C for 14 days, and the effects of feed supplementation with thymol (control diet and diet with 2 different concentration of thymol) and packaging conditions on lipid oxidation of poultry thigh meat shelf-life (stored at 4°C for 14 days). The oxidative stability of poultry meat was studied by means of the spectrophotometric determinations of peroxide value and thiobarbituric acid reactive substances. - Evaluation of anti-inflammatory effects of different flavonoids (thymol, luteolin, tangeretin, sulforaphane, polymethoxyflavones, curcumin derivates) to detect their biological activity in LPS-stimulated RAW 264.7 macrophage cells in vitro, in order to study more in depth their action mechanisms. It was evaluated the cell vitality (MTT assay), nitrite concentration and protein profile. The study was focused on the identification of potential dietary bioactive compounds in order to investigate their biological activity and possible synergic effects, and to develop new suitable strategies for long-term promotion of human health, in particular against cancer.
Resumo:
Die transmembrane Potenzialdifferenz Δφm ist direkt mit der katalytischen Aktivität der Cytochrom c Oxidase (CcO) verknüpft. Die CcO ist das terminale Enzym (Komplex IV) in der Atmungskette der Mitochondrien. Das Enzym katalysiert die Reduktion von O2 zu 2 H2O. Dabei werden Elektronen vom natürlichen Substrat Cytochrom c zur CcO übertragen. Der Eleltronentransfer innerhalb der CcO ist an die Protonentranslokation über die Membran gekoppelt. Folglich bildet sich über der inneren Membrane der Mitochondrien eine Differenz in der Protonenkonzentration. Zusätzlich wird eine Potenzialdifferenz Δφm generiert.rnrnDas Transmembranpotenzial Δφm kann mit Hilfe der Fluoreszenzspektroskopie unter Einsatz eines potenzialemfindlichen Farbstoffs gemessen werden. Um quantitative Aussagen aus solchen Untersuchungen ableiten zu können, müssen zuvor Kalibrierungsmessungen am Membransystem durchgeführt werden.rnrnIn dieser Arbeit werden Kalibrierungsmessungen von Δφm in einer Modellmembrane mit inkorporiertem CcO vorgestellt. Dazu wurde ein biomimetisches Membransystem, die Proteinverankerte Doppelschicht (protein-tethered Bilayer Lipid Membrane, ptBLM), auf einem transparenten, leitfähigem Substrat (Indiumzinnoxid, ITO) entwickelt. ITO ermöglicht den simultanen Einsatz von elektrochemischen und Fluoreszenz- oder optischen wellenleiterspektroskopischen Methoden. Das Δφm in der ptBLM wurde durch extern angelegte, definierte elektrische Spannungen induziert. rnrnEine dünne Hydrogelschicht wurde als "soft cushion" für die ptBLM auf ITO eingesetzt. Das Polymernetzwerk enthält die NTA Funktionsgruppen zur orientierten Immobilisierung der CcO auf der Oberfläche der Hydrogels mit Hilfe der Ni-NTA Technik. Die ptBLM wurde nach der Immobilisierung der CcO mittels in-situ Dialyse gebildet. Elektrochemische Impedanzmessungen zeigten einen hohen elektrischen Widerstand (≈ 1 MΩ) der ptBLM. Optische Wellenleiterspektren (SPR / OWS) zeigten eine erhöhte Anisotropie des Systems nach der Bildung der Doppellipidschicht. Cyklovoltammetriemessungen von reduziertem Cytochrom c bestätigten die Aktivität der CcO in der Hydrogel-gestützten ptBLM. Das Membranpotenzial in der Hydrogel-gestützten ptBLM, induziert durch definierte elektrische Spannungen, wurde mit Hilfe der ratiometrischen Fluoreszenzspektroskopie gemessen. Referenzmessungen mit einer einfach verankerten Dopplellipidschicht (tBLM) lieferten einen Umrechnungsfaktor zwischen dem ratiometrischen Parameter Rn und dem Membranpotenzial (0,05 / 100 mV). Die Nachweisgrenze für das Membranpotenzial in einer Hydrogel-gestützten ptBLM lag bei ≈ 80 mV. Diese Daten dienen als gute Grundlage für künftige Untersuchungen des selbstgenerierten Δφm der CcO in einer ptBLM.
Resumo:
In green plants, the function of collecting solar energy for photosynthesis is fulfilled by a series of light-harvesting complexes (LHC). The light-harvesting chlorophyll a/b protein (LHCP) is synthesized in the cytosol as a precursor (pLHCP), then imported into chloroplasts and assembled into photosynthetic thylakoid membranes. Knowledge about the regulation of the transport processes of LHCP is rather limited. Closely mimicking the in vivo situation, cell-free protein expression system is employed in this dissertation to study the reconstitution of LHCP into artificial membranes. The approach starts merely from the genetic information of the protein, so the difficult and time-consuming procedures of protein expression and purification can be avoided. The LHCP encoding gene from Pisum sativum was cloned into a cell-free compatible vector system and the protein was expressed in wheat germ extracts. Vesicles or pigment-containing vesicles were prepared with either synthetic lipid or purified plant leaf lipid to mimic cell membranes. LHCP was synthesized in wheat germ extract systems with or without supplemented lipids. The addition of either synthetic or purified plant leaf lipid was found to be beneficial to the general productivity of the expression system. The lipid membrane insertion of the LHCP was investigated by radioactive labelling, protease digestion, and centrifugation assays. The LHCP is partially protected against protease digestion; however the protection is independent from the supplemented lipids.
Resumo:
We present a coarse grained model for computer simulations of lipid mixtures, which we use to study generic mechanisms for the formation of nanoscale membrane structures (lipid rafts). We observe that even a two component system can separate into rafts of finite size, and we study these rafts and other membrane structures in detail. We look at the characteristics of our model that enable these phenomena and how they may relate to lipid-cholesterol or lipid-lipid mixtures. We propose an explanation for our findings using elastic theory to describe a possible mechanism of raft stabilization via curvature differences between coexisting lipid phases and we investigate whether this theory can be used to explain the results of our computer simulations.
Resumo:
Aquaporine sind hochselektive Transmembrankanäle, die in allen Lebensformen den Fluss von Wasser und kleinen, polaren Molekülen wie Glycerol über Lipidmembranen ermöglichen. Obwohl die Kanalpore für den Substratfluss im Monomer lokalisiert ist, liegen Aquaporine innerhalb biologischer Membranen als Homotetramere vor. Im Rahmen dieser Arbeit wurden proteinbezogene und lipidmembranassoziierte Einflüsse auf die Oligomerisierung und Funktion des bakteriellen Aquaglyceroporins GlpF sowohl in vitro als auch in vivo untersucht. rnDie erhöhte Stabilität der Aquaporinpore sowie Interaktion zwischen den GlpF-Monomeren sind Triebkräfte der Aquaporin-Tetramerisierung. Ferner erfordern die GlpF-Tetramerisierung und -Aktivität bei Abschirmung der Ladung anionischer Lipide und einer minimalen Membrandicke von 27 Å keine spezielle Lipidumgebung. Da anionische Lipide die GlpF-Funktion jedoch störten, kann die GlpF-Aktivität in vivo möglicherweise durch die selektive Anreicherung von anionischen Lipiden in der unmittelbaren Proteinumgebung reguliert werden. Ungünstige Lipid-GlpF-Interaktionen können jedoch in Lipidumgebungen mit hoher Ordnung in der Acylkettenregion entstehen, die zu einer Aggregation der GlpF-Tetramere und reduzierten Aktivität führen. rnFerner wurde die Auswirkung der nephrogenen Diabetes insipidus verursachenden Aquaporin 2-Punktmutation V71M auf die Oligomerisierung und Funktion des homologen, bakteriellen Aquaglyceroporins GlpF untersucht. Da weder die Oligomierisierung noch die Aktivität des homologen, bakteriellen Aquaglyceroporins eingeschränkt sind, beruht der Krankheitsmechanismus der Aquaporin 2-Mutante V71M vermutlich auf einem defekten Transportmechansimus im Menschen. rn
Resumo:
Nowadays, soy is one of the most used ingredients in the formulation of fish feed, due to the ample market supply, lower market price, high protein concentration and favorable amino acid composition. Nevertheless, soybean meal products are rich and primary diet source of phytoestrogens, as genistein, which may have a potential negative impact on growth, hormonal regulation and lipid metabolism in fish. The principal aim of this study was to better understand in vivo and in vitro genistein’s effects on lipid metabolism of rainbow trout. In adipose tissue it was showed an unclear role of genistein on lipid metabolism in rainbow trout, and in liver an anti-obesogenic effect, with an up-regulation of autophagy-related genes LC3b (in adipose tissue) and ATG4b (in liver and adipose tissue), a down-regulation of apoptosis-related genes CASP3 (in adipose tissue) and CASP8 (in liver). An increase of VTG mRNA levels in liver was also observed. Genistein partially exerted these effects via estrogen- receptor dependent mechanism. In white muscle, genistein seemed to promote lipid turnover, up-regulating lipogenic (FAS and LXR) and lipolytic (HSL, PPARα and PPARβ) genes. It seemed that genistein could exert its lipolytic role via autophagic way (up-regulation of ATG4b and ATG12l), not through an apoptotic pathway (down-regulation of CASP3). The effects of genistein on lipid-metabolism and apoptosis-related genes in trout muscle were not dose-dependent, only on autophagy-related genes ATG4B and ATG12l. Moreover, a partial estrogenic activity of this phytoestrogen was also seen. Through in vitro analysis (MTT and ORO assay), instead, it was observed an anti-obesogenic effect of genistein on rainbow trout adipocytes, and this effect was not mediated by ERs. Both in vivo and in vitro, genistein exerted its effects in a dose-dependent manner.
Resumo:
In skeletal muscle of patients with clinically diagnosed statin-associated myopathy, discrete signs of structural damage predominantly localize to the T-tubular region and are suggestive of a calcium leak. The impact of statins on skeletal muscle of non-myopathic patients is not known. We analyzed the expression of selected genes implicated in the molecular regulation of calcium and membrane repair, in lipid homeostasis, myocyte remodeling and mitochondrial function. Microscopic and gene expression analyses were performed using validated TaqMan custom arrays on skeletal muscle biopsies of 72 age-matched subjects who were receiving statin therapy (n = 38), who had discontinued therapy due to statin-associated myopathy (n = 14), and who had never undergone statin treatment (n = 20). In skeletal muscle, obtained from statin-treated, non-myopathic patients, statins caused extensive changes in the expression of genes of the calcium regulatory and the membrane repair machinery, whereas the expression of genes responsible for mitochondrial function or myocyte remodeling was unaffected. Discontinuation of treatment due to myopathic symptoms led to a normalization of gene expression levels, the genes encoding the ryanodine receptor 3, calpain 3, and dystrophin being the most notable exceptions. Hence, even in clinically asymptomatic (non-myopathic) patients, statin therapy leads to an upregulation in the expression of genes that are concerned with skeletal muscle regulation and membrane repair.
Resumo:
Previous work has shown that the -tocopherol transfer protein ( -TTP) can bind to vesicular or immobilized phospholipid membranes. Revealing the molecular mechanisms by which -TTP associates with membranes is thought to be critical to understanding its function and role in the secretion of tocopherol from hepatocytes into the circulation. Calculations presented in the Orientations of Proteins in Membranes database have provided a testable model for the spatial arrangement of -TTP and other CRAL-TRIO family proteins with respect to the lipid bilayer. These calculations predicted that a hydrophobic surface mediates the interaction of -TTP with lipid membranes. To test the validity of these predictions, we used site-directed mutagenesis and examined the substituted mutants with regard to intermembrane ligand transfer, association with lipid layers and biological activity in cultured hepatocytes. Substitution of residues in helices A8 (F165A and F169A) and A10 (I202A, V206A and M209A) decreased the rate of intermembrane ligand transfer as well as protein adsorption to phospholipid bilayers. The largest impairment was observed upon mutation of residues that are predicted to be fully immersed in the lipid bilayer in both apo (open) and holo (closed) conformations such as Phe165 and Phe169. Mutation F169A, and especially F169D, significantly impaired -TTP-assisted secretion of -tocopherol outside cultured hepatocytes. Mutation of selected basic residues (R192H, K211A, and K217A) had little effect on transfer rates, indicating no significant involvement of nonspecific electrostatic interactions with membranes.
Resumo:
The calculation of projection structures (PSs) from Protein Data Bank (PDB)-coordinate files of membrane proteins is not well-established. Reports on such attempts exist but are rare. In addition, the different procedures are barely described and thus difficult if not impossible to reproduce. Here we present a simple, fast and well-documented method for the calculation and visualization of PSs from PDB-coordinate files of membrane proteins: the projection structure visualization (PSV)-method. The PSV-method was successfully validated using the PS of aquaporin-1 (AQP1) from 2D crystals and cryo-transmission electron microscopy, and the PDB-coordinate file of AQP1 determined from 3D crystals and X-ray crystallography. Besides AQP1, which is a relatively rigid protein, we also studied a flexible membrane transport protein, i.e. the L-arginine/agmatine antiporter AdiC. Comparison of PSs calculated from the existing PDB-coordinate files of substrate-free and L-arginine-bound AdiC indicated that conformational changes are detected in projection. Importantly, structural differences were found between the PSV-method calculated PSs of the detergent-solubilized AdiC proteins and the PS from cryo-TEM of membrane-embedded AdiC. These differences are particularly exciting since they may reflect a different conformation of AdiC induced by the lateral pressure in the lipid bilayer.
Resumo:
A broad spectrum of beneficial effects has been ascribed to creatine (Cr), phosphocreatine (PCr) and their cyclic analogues cyclo-(cCr) and phospho-cyclocreatine (PcCr). Cr is widely used as nutritional supplement in sports and increasingly also as adjuvant treatment for pathologies such as myopathies and a plethora of neurodegenerative diseases. Additionally, Cr and its cyclic analogues have been proposed for anti-cancer treatment. The mechanisms involved in these pleiotropic effects are still controversial and far from being understood. The reversible conversion of Cr and ATP into PCr and ADP by creatine kinase, generating highly diffusible PCr energy reserves, is certainly an important element. However, some protective effects of Cr and analogues cannot be satisfactorily explained solely by effects on the cellular energy state. Here we used mainly liposome model systems to provide evidence for interaction of PCr and PcCr with different zwitterionic phospholipids by applying four independent, complementary biochemical and biophysical assays: (i) chemical binding assay, (ii) surface plasmon resonance spectroscopy (SPR), (iii) solid-state (31)P-NMR, and (iv) differential scanning calorimetry (DSC). SPR revealed low affinity PCr/phospholipid interaction that additionally induced changes in liposome shape as indicated by NMR and SPR. Additionally, DSC revealed evidence for membrane packing effects by PCr, as seen by altered lipid phase transition. Finally, PCr efficiently protected against membrane permeabilization in two different model systems: liposome-permeabilization by the membrane-active peptide melittin, and erythrocyte hemolysis by the oxidative drug doxorubicin, hypoosmotic stress or the mild detergent saponin. These findings suggest a new molecular basis for non-energy related functions of PCr and its cyclic analogue. PCr/phospholipid interaction and alteration of membrane structure may not only protect cellular membranes against various insults, but could have more general implications for many physiological membrane-related functions that are relevant for health and disease.