1000 resultados para Manoeuvring models
Resumo:
The problem of identifying parameters of time invariant linear dynamical systems with fractional derivative damping models, based on a spatially incomplete set of measured frequency response functions and experimentally determined eigensolutions, is considered. Methods based on inverse sensitivity analysis of damped eigensolutions and frequency response functions are developed. It is shown that the eigensensitivity method requires the development of derivatives of solutions of an asymmetric generalized eigenvalue problem. Both the first and second order inverse sensitivity analyses are considered. The study demonstrates the successful performance of the identification algorithms developed based on synthetic data on one, two and a 33 degrees of freedom vibrating systems with fractional dampers. Limited studies have also been conducted by combining finite element modeling with experimental data on accelerances measured in laboratory conditions on a system consisting of two steel beams rigidly joined together by a rubber hose. The method based on sensitivity of frequency response functions is shown to be more efficient than the eigensensitivity based method in identifying system parameters, especially for large scale systems.
Resumo:
Knowledge of drag force is an important design parameter in aerodynamics. Measurement of aerodynamic forces at hypersonic speed is a challenge and usually ground test facilities like shock tunnels are used to carry out such tests. Accelerometer based force balances are commonly employed for measuring aerodynamic drag around bodies in hypersonic shock tunnels. In this study, we present an analysis of the effect of model material on the performance of an accelerometer balance used for measurement of drag in impulse facilities. From the experimental studies performed on models constructed out of Bakelite HYLEM and Aluminum, it is clear that the rigid body assumption does not hold good during the short testing duration available in shock tunnels. This is notwithstanding the fact that the rubber bush used for supporting the model allows unconstrained motion of the model during the short testing time available in the shock tunnel. The vibrations induced in the model on impact loading in the shock tunnel are damped out in metallic model, resulting in a smooth acceleration signal, while the signal become noisy and non-linear when we use non-isotropic materials like Bakelite HYLEM. This also implies that careful analysis and proper data reduction methodologies are necessary for measuring aerodynamic drag for non-metallic models in shock tunnels. The results from the drag measurements carried out using a 60 degrees half angle blunt cone is given in the present analysis.
Resumo:
Public-Private Partnerships (PPP) are established globally as an important mode of procurement and the features of PPP, not least of which the transfer of risk, appeal to governments and particularly in the current economic climate. There are many other advantages of PPP that are claimed as outweighing the costs of PPP and affording Value for Money (VfM) relative to traditionally financed projects or non-PPP. That said, it is the case that we lack comparative whole-life empirical studies of VfM in PPP and non-PPP. Whilst we await this kind of study, the pace and trajectory of PPP seem set to continue and so in the meantime, the virtues of seeking to improve PPP appear incontrovertible. The decision about which projects, or parts of projects, to offer to the market as a PPP and the decision concerning the allocation or sharing risks as part of engagement of the PPP consortium are among the most fundamental decisions that determine whether PPP deliver VfM. The focus in the paper is on latter decision concerning governments’ attitudes towards risk and more specifically, the effect of this decision on the nature of the emergent PPP consortium, or PPP model, including its economic behavior and outcomes. This paper presents an exploration into the extent to which the seemingly incompatible alternatives of risk allocation and risk sharing, represented by the orthodox/conventional PPP model and the heterodox/alliance PPP model respectively, can be reconciled along with suggestions for new research directions to inform this reconciliation. In so doing, an important step is taken towards charting a path by which governments can harness the relative strengths of both kinds of PPP model.
Resumo:
Absenteeism is one of the major problems of Indian industries. It necessitates the employment of more manpower than the jobs require, resulting in the increase of manpower costs, and lowers the efficiency of plant operation through lowered performance and higher rejects. It also causes machine idleness, if extra manpower is not hired, resulting in disrupted work schedules and assignments. Several studies have investigated the causes of absenteeism (Vaid 1967) for example and their remedy and relationship between absenteeism and turnover with a suggested model for diagnosis and treatment (Hawk 1976) However, the production foremen and supervisor will face the operating task of determining how many extra operatives are to be hired in order to stave off the adverse effects of absenteeism on the man-machine system. This paper deals with a class of reserve manpower models based on the reject allowance model familiar in quality control literature. The present study considers, in addition to absenteeism, machine failures and the graded nature of manpower met within production systems and seeks to find optimal reserve manpower through computer simulation.
Resumo:
This paper studies the problem of selecting users in an online social network for targeted advertising so as to maximize the adoption of a given product. In previous work, two families of models have been considered to address this problem: direct targeting and network-based targeting. The former approach targets users with the highest propensity to adopt the product, while the latter approach targets users with the highest influence potential – that is users whose adoption is most likely to be followed by subsequent adoptions by peers. This paper proposes a hybrid approach that combines a notion of propensity and a notion of influence into a single utility function. We show that targeting a fixed number of high-utility users results in more adoptions than targeting either highly influential users or users with high propensity.
Resumo:
Modeling of cultivar x trial effects for multienvironment trials (METs) within a mixed model framework is now common practice in many plant breeding programs. The factor analytic (FA) model is a parsimonious form used to approximate the fully unstructured form of the genetic variance-covariance matrix in the model for MET data. In this study, we demonstrate that the FA model is generally the model of best fit across a range of data sets taken from early generation trials in a breeding program. In addition, we demonstrate the superiority of the FA model in achieving the most common aim of METs, namely the selection of superior genotypes. Selection is achieved using best linear unbiased predictions (BLUPs) of cultivar effects at each environment, considered either individually or as a weighted average across environments. In practice, empirical BLUPs (E-BLUPs) of cultivar effects must be used instead of BLUPs since variance parameters in the model must be estimated rather than assumed known. While the optimal properties of minimum mean squared error of prediction (MSEP) and maximum correlation between true and predicted effects possessed by BLUPs do not hold for E-BLUPs, a simulation study shows that E-BLUPs perform well in terms of MSEP.
Resumo:
Laboratory-based relationships that model the phytotoxicity of metals using soil properties have been developed. This paper presents the first field-based phytotoxicity relationships. Wheat(Triticum aestivum L) was grown at 11 Australian field sites at which soil was spiked with copper (Cu) and zinc (Zn) salts. Toxicity was measured as inhibition of plant growth at 8 weeks and grain yield at harvest. The added Cu and Zn EC10 values for both endpoints ranged from approximately 3 to 4760 mg/kg. There were no relationships between field-based 8-week biomass and grain yield toxicity values for either metal. Cu toxicity was best modelled using pH and organic carbon content while Zn toxicity was best modelled using pH and the cation exchange capacity. The best relationships estimated toxicity within a factor of two of measured values. Laboratory-based phytotoxicity relationships could not accurately predict field-based phytotoxicity responses.
Resumo:
To facilitate marketing and export, the Australian macadamia industry requires accurate crop forecasts. Each year, two levels of crop predictions are produced for this industry. The first is an overall longer-term forecast based on tree census data of growers in the Australian Macadamia Society (AMS). This data set currently accounts for around 70% of total production, and is supplemented by our best estimates of non-AMS orchards. Given these total tree numbers, average yields per tree are needed to complete the long-term forecasts. Yields from regional variety trials were initially used, but were found to be consistently higher than the average yields that growers were obtaining. Hence, a statistical model was developed using growers' historical yields, also taken from the AMS database. This model accounted for the effects of tree age, variety, year, region and tree spacing, and explained 65% of the total variation in the yield per tree data. The second level of crop prediction is an annual climate adjustment of these overall long-term estimates, taking into account the expected effects on production of the previous year's climate. This adjustment is based on relative historical yields, measured as the percentage deviance between expected and actual production. The dominant climatic variables are observed temperature, evaporation, solar radiation and modelled water stress. Initially, a number of alternate statistical models showed good agreement within the historical data, with jack-knife cross-validation R2 values of 96% or better. However, forecasts varied quite widely between these alternate models. Exploratory multivariate analyses and nearest-neighbour methods were used to investigate these differences. For 2001-2003, the overall forecasts were in the right direction (when compared with the long-term expected values), but were over-estimates. In 2004 the forecast was well under the observed production, and in 2005 the revised models produced a forecast within 5.1% of the actual production. Over the first five years of forecasting, the absolute deviance for the climate-adjustment models averaged 10.1%, just outside the targeted objective of 10%.
Resumo:
Partial least squares regression models on NIR spectra are often optimised (for wavelength range, mathematical pretreatment and outlier elimination) in terms of calibration terms of validation performance with reference to totally independent populations.
Resumo:
Changing the topology of a railway network can greatly affect its capacity. Railway networks however can be altered in a multitude of different ways. As each way has significant immediate and long term financial ramifications, it is a difficult task to decide how and where to expand the network. In response some railway capacity expansion models (RCEM) have been developed to help capacity planning activities, and to remove physical bottlenecks in the current railway system. The exact purpose of these models is to decide given a fixed budget, where track duplications and track sub divisions should be made, in order to increase theoretical capacity most. These models are high level and strategic, and this is why increases to the theoretical capacity is concentrated upon. The optimization models have been applied to a case study to demonstrate their application and their worth. The case study evidently shows how automated approaches of this nature could be a formidable alternative to current manual planning techniques and simulation. If the exact effect of track duplications and sub-divisions can be sufficiently approximated, this approach will be very applicable.
Resumo:
The Davis Growth Model (a dynamic steer growth model encompassing 4 fat deposition models) is currently being used by the phenotypic prediction program of the Cooperative Research Centre (CRC) for Beef Genetic Technologies to predict P8 fat (mm) in beef cattle to assist beef producers meet market specifications. The concepts of cellular hyperplasia and hypertrophy are integral components of the Davis Growth Model. The net synthesis of total body fat (kg) is calculated from the net energy available after accounting tor energy needs for maintenance and protein synthesis. Total body fat (kg) is then partitioned into 4 fat depots (intermuscular, intramuscular, subcutaneous, and visceral). This paper reports on the parameter estimation and sensitivity analysis of the DNA (deoxyribonucleic acid) logistic growth equations and the fat deposition first-order differential equations in the Davis Growth Model using acslXtreme (Hunstville, AL, USA, Xcellon). The DNA and fat deposition parameter coefficients were found to be important determinants of model function; the DNA parameter coefficients with days on feed >100 days and the fat deposition parameter coefficients for all days on feed. The generalized NL2SOL optimization algorithm had the fastest processing time and the minimum number of objective function evaluations when estimating the 4 fat deposition parameter coefficients with 2 observed values (initial and final fat). The subcutaneous fat parameter coefficient did indicate a metabolic difference for frame sizes. The results look promising and the prototype Davis Growth Model has the potential to assist the beef industry meet market specifications.
Resumo:
Diffusive transport is a universal phenomenon, throughout both biological and physical sciences, and models of diffusion are routinely used to interrogate diffusion-driven processes. However, most models neglect to take into account the role of volume exclusion, which can significantly alter diffusive transport, particularly within biological systems where the diffusing particles might occupy a significant fraction of the available space. In this work we use a random walk approach to provide a means to reconcile models that incorporate crowding effects on different spatial scales. Our work demonstrates that coarse-grained models incorporating simplified descriptions of excluded volume can be used in many circumstances, but that care must be taken in pushing the coarse-graining process too far.
Resumo:
Understanding the effects of different types and quality of data on bioclimatic modeling predictions is vital to ascertaining the value of existing models, and to improving future models. Bioclimatic models were constructed using the CLIMEX program, using different data types – seasonal dynamics, geographic (overseas) distribution, and a combination of the two – for two biological control agents for the major weed Lantana camara L. in Australia. The models for one agent, Teleonemia scrupulosa Stål (Hemiptera:Tingidae) were based on a higher quality and quantity of data than the models for the other agent, Octotoma scabripennis Guérin-Méneville (Coleoptera: Chrysomelidae). Predictions of the geographic distribution for Australia showed that T. scrupulosa models exhibited greater accuracy with a progressive improvement from seasonal dynamics data, to the model based on overseas distribution, and finally the model combining the two data types. In contrast, O. scabripennis models were of low accuracy, and showed no clear trends across the various model types. These case studies demonstrate the importance of high quality data for developing models, and of supplementing distributional data with species seasonal dynamics data wherever possible. Seasonal dynamics data allows the modeller to focus on the species response to climatic trends, while distributional data enables easier fitting of stress parameters by restricting the species envelope to the described distribution. It is apparent that CLIMEX models based on low quality seasonal dynamics data, together with a small quantity of distributional data, are of minimal value in predicting the spatial extent of species distribution.