959 resultados para Learning sequence


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the conventional wisdom that proactive security is superior to reactive security, we show that reactive security can be competitive with proactive security as long as the reactive defender learns from past attacks instead of myopically overreacting to the last attack. Our game-theoretic model follows common practice in the security literature by making worst-case assumptions about the attacker: we grant the attacker complete knowledge of the defender’s strategy and do not require the attacker to act rationally. In this model, we bound the competitive ratio between a reactive defense algorithm (which is inspired by online learning theory) and the best fixed proactive defense. Additionally, we show that, unlike proactive defenses, this reactive strategy is robust to a lack of information about the attacker’s incentives and knowledge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent research on multiple kernel learning has lead to a number of approaches for combining kernels in regularized risk minimization. The proposed approaches include different formulations of objectives and varying regularization strategies. In this paper we present a unifying optimization criterion for multiple kernel learning and show how existing formulations are subsumed as special cases. We also derive the criterion’s dual representation, which is suitable for general smooth optimization algorithms. Finally, we evaluate multiple kernel learning in this framework analytically using a Rademacher complexity bound on the generalization error and empirically in a set of experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In semisupervised learning (SSL), a predictive model is learn from a collection of labeled data and a typically much larger collection of unlabeled data. These paper presented a framework called multi-view point cloud regularization (MVPCR), which unifies and generalizes several semisupervised kernel methods that are based on data-dependent regularization in reproducing kernel Hilbert spaces (RKHSs). Special cases of MVPCR include coregularized least squares (CoRLS), manifold regularization (MR), and graph-based SSL. An accompanying theorem shows how to reduce any MVPCR problem to standard supervised learning with a new multi-view kernel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper "the importance of convexity in learning with squared loss" gave a lower bound on the sample complexity of learning with quadratic loss using a nonconvex function class. The proof contains an error. We show that the lower bound is true under a stronger condition that holds for many cases of interest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problem of choosing, sequentially, a map which assigns elements of a set A to a few elements of a set B. On each round, the algorithm suffers some cost associated with the chosen assignment, and the goal is to minimize the cumulative loss of these choices relative to the best map on the entire sequence. Even though the offline problem of finding the best map is provably hard, we show that there is an equivalent online approximation algorithm, Randomized Map Prediction (RMP), that is efficient and performs nearly as well. While drawing upon results from the "Online Prediction with Expert Advice" setting, we show how RMP can be utilized as an online approach to several standard batch problems. We apply RMP to online clustering as well as online feature selection and, surprisingly, RMP often outperforms the standard batch algorithms on these problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Machine learning has become a valuable tool for detecting and preventing malicious activity. However, as more applications employ machine learning techniques in adversarial decision-making situations, increasingly powerful attacks become possible against machine learning systems. In this paper, we present three broad research directions towards the end of developing truly secure learning. First, we suggest that finding bounds on adversarial influence is important to understand the limits of what an attacker can and cannot do to a learning system. Second, we investigate the value of adversarial capabilities-the success of an attack depends largely on what types of information and influence the attacker has. Finally, we propose directions in technologies for secure learning and suggest lines of investigation into secure techniques for learning in adversarial environments. We intend this paper to foster discussion about the security of machine learning, and we believe that the research directions we propose represent the most important directions to pursue in the quest for secure learning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of decision making in an uncertain environment arises in many diverse contexts: deciding whether to keep a hard drive spinning in a net-book; choosing which advertisement to post to a Web site visitor; choosing how many newspapers to order so as to maximize profits; or choosing a route to recommend to a driver given limited and possibly out-of-date information about traffic conditions. All are sequential decision problems, since earlier decisions affect subsequent performance; all require adaptive approaches, since they involve significant uncertainty. The key issue in effectively solving problems like these is known as the exploration/exploitation trade-off: If I am at a cross-roads, when should I go in the most advantageous direction among those that I have already explored, and when should I strike out in a new direction, in the hopes I will discover something better?

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Log-linear and maximum-margin models are two commonly-used methods in supervised machine learning, and are frequently used in structured prediction problems. Efficient learning of parameters in these models is therefore an important problem, and becomes a key factor when learning from very large data sets. This paper describes exponentiated gradient (EG) algorithms for training such models, where EG updates are applied to the convex dual of either the log-linear or max-margin objective function; the dual in both the log-linear and max-margin cases corresponds to minimizing a convex function with simplex constraints. We study both batch and online variants of the algorithm, and provide rates of convergence for both cases. In the max-margin case, O(1/ε) EG updates are required to reach a given accuracy ε in the dual; in contrast, for log-linear models only O(log(1/ε)) updates are required. For both the max-margin and log-linear cases, our bounds suggest that the online EG algorithm requires a factor of n less computation to reach a desired accuracy than the batch EG algorithm, where n is the number of training examples. Our experiments confirm that the online algorithms are much faster than the batch algorithms in practice. We describe how the EG updates factor in a convenient way for structured prediction problems, allowing the algorithms to be efficiently applied to problems such as sequence learning or natural language parsing. We perform extensive evaluation of the algorithms, comparing them to L-BFGS and stochastic gradient descent for log-linear models, and to SVM-Struct for max-margin models. The algorithms are applied to a multi-class problem as well as to a more complex large-scale parsing task. In all these settings, the EG algorithms presented here outperform the other methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Online learning algorithms have recently risen to prominence due to their strong theoretical guarantees and an increasing number of practical applications for large-scale data analysis problems. In this paper, we analyze a class of online learning algorithms based on fixed potentials and nonlinearized losses, which yields algorithms with implicit update rules. We show how to efficiently compute these updates, and we prove regret bounds for the algorithms. We apply our formulation to several special cases where our approach has benefits over existing online learning methods. In particular, we provide improved algorithms and bounds for the online metric learning problem, and show improved robustness for online linear prediction problems. Results over a variety of data sets demonstrate the advantages of our framework.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The risk, or probability of error, of the classifier produced by the AdaBoost algorithm is investigated. In particular, we consider the stopping strategy to be used in AdaBoost to achieve universal consistency. We show that provided AdaBoost is stopped after n1-ε iterations---for sample size n and ε ∈ (0,1)---the sequence of risks of the classifiers it produces approaches the Bayes risk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent research on multiple kernel learning has lead to a number of approaches for combining kernels in regularized risk minimization. The proposed approaches include different formulations of objectives and varying regularization strategies. In this paper we present a unifying general optimization criterion for multiple kernel learning and show how existing formulations are subsumed as special cases. We also derive the criterion's dual representation, which is suitable for general smooth optimization algorithms. Finally, we evaluate multiple kernel learning in this framework analytically using a Rademacher complexity bound on the generalization error and empirically in a set of experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problem of prediction with expert advice in the setting where a forecaster is presented with several online prediction tasks. Instead of competing against the best expert separately on each task, we assume the tasks are related, and thus we expect that a few experts will perform well on the entire set of tasks. That is, our forecaster would like, on each task, to compete against the best expert chosen from a small set of experts. While we describe the "ideal" algorithm and its performance bound, we show that the computation required for this algorithm is as hard as computation of a matrix permanent. We present an efficient algorithm based on mixing priors, and prove a bound that is nearly as good for the sequential task presentation case. We also consider a harder case where the task may change arbitrarily from round to round, and we develop an efficient approximate randomized algorithm based on Markov chain Monte Carlo techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kernel-based learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information is contained in the so-called kernel matrix, a symmetric and positive definite matrix that encodes the relative positions of all points. Specifying this matrix amounts to specifying the geometry of the embedding space and inducing a notion of similarity in the input space -- classical model selection problems in machine learning. In this paper we show how the kernel matrix can be learned from data via semi-definite programming (SDP) techniques. When applied to a kernel matrix associated with both training and test data this gives a powerful transductive algorithm -- using the labelled part of the data one can learn an embedding also for the unlabelled part. The similarity between test points is inferred from training points and their labels. Importantly, these learning problems are convex, so we obtain a method for learning both the model class and the function without local minima. Furthermore, this approach leads directly to a convex method to learn the 2-norm soft margin parameter in support vector machines, solving another important open problem. Finally, the novel approach presented in the paper is supported by positive empirical results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A range of terms is used in Australian higher education institutions to describe learning approaches and teaching models that provide students with opportunities to engage in learning connected to the world of work. The umbrella term currently being used widely is Work Integrated Learning (WIL). The common aim of approaches captured under the term WIL is to integrate discipline specific knowledge learnt in university setting with that learnt in the practice of work through purposefully designed curriculum. In endeavours to extend WIL opportunities for students, universities are currently exploring authentic learning experiences, both within and outside of university settings. Some universities describe these approaches as ‘real world learning’ or ‘professional learning’. Others refer to ‘social engagement’ with the community and focus on building social capital and citizenship through curriculum design that enables students to engage with the professions through a range of learning experiences. This chapter discusses the context for, the scope, purposes, characteristics and effectiveness of WIL across Australian universities as derived from a national scoping study. This study, undertaken in response to a high level of interest in WIL, involved data collection from academic and professional staff, and students at nearly all Australian universities. Participants in the study consistently reported the benefits, especially in relation to the student learning experience. Responses highlight the importance of strong partnerships between stakeholders to facilitate effective learning outcomes and a range of issues that shape the quality of approaches and models being adopted, in promoting professional learning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a rapidly changing world where new work patterns impact on our health, relationships and social fabric, it is critical that we reconsider the role universities could or should play in helping students prepare for the complexities of the 21st century. Efforts to respond to economic imperatives such as the skills shortage have seen a rush to embed work integrated and career development learning in the curriculum as well as a strengthening of the discourse that the university’s role is primarily to produce industry ready or ‘oven ready and self basting’ graduates (Atkins, 1999). This narrow focus on ‘giving industry what industry wants’ (Patrick, Peach & Pocknee, 2009) ignores the importance of helping students develop the types of skills and dispositions they will need. To enable students to thrive not just survive socially and economically in a radically unknowable world, where knowledge becomes obsolete, we need to be ready to develop new futures (Barnett, 2004). This paper considers the concept of ‘work’, the role it plays in our lives, and our aspirations to build sustainable, socially connected communities. We revisit the assumptions underlying the employability argument (Atkins, 1999) in the light of changing notions of work (Hagel, Seely Brown & Davison, 2010), and the need for higher education to contribute to a better and more sustainable society (Pocock, 2003). Specifically we present initiatives developed from work integrated learning (WIL) programs in the United Kingdom and Australia, where WIL programs are framed within the broader context of real world and life-wide curriculum (Jackson, 2010), and where transferable skills and elements of work-related learning programs prepare students for less certain job futures. Such approaches encourage students to take an agentic role (Billett & Pavlova, 2005) in selecting their work possibilities to develop resilience and capabilities to deal with new and challenging situations, assisting students to become who they want to be not just what they want to be. The theoretical and operational implications and challenges of shaping real world and life-wide curriculum will be investigated in more depth in the next phase of this research.