903 resultados para Layer Interfaces


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adsorption kinetics curves of poly(xylylidene tetrahydrothiophenium chloride) (PTHT), a poly-p-phenylenevinylene (PPV) precursor, and the sodium salt of dodecylbenzene sulfonic acid (DBS), onto (PTHT/DBS)(n) layer-by-layer (LBL) films were characterized by means of UV-vis spectroscopy. The amount of PTHT/DBS and PTHT adsorbed on each layer was shown to be practically independent of adsorption time. A Langmuir-type metastable equilibrium model was used to adjust the adsorption isotherms data and to estimate adsorption/desorption coefficients ratios, k = k(ads)/k(des), values of 2 x 10(5) and 4 x 10(6) for PTHT and PTHT/DBS layers, respectively. The desorption coefficient has been estimated, using literature values for poly(o-methoxyaniline) desorption coefficient, as was found to be in the range of 10(-9) to 10(-6) s(-1), indicating that quasi equilibrium is rapidly attained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sum-Frequency Vibrational Spectroscopy (SFVS) has been used to investigate the effect of nitrogen-flow drying on the molecular ordering of Layer-by-Layer (LbL) films of poly(allylamine hydrochloride) (PAH) alternated with poly(styrene sulfonate) (PSS). We find that films dried by spontaneous water evaporation are more ordered and homogeneous than films dried by nitrogen flow. The latter are quite inhomogeneous and may have regions with highly disordered polymer conformation. We propose that drying by spontaneous water evaporation reduces the effect of drag by the drying front, while during nitrogen-flow drying the fast evaporation of water ""freezes"" the disordered conformation of adsorbed polyelectrolyte molecules. These findings are important for many applications of LbL films, since device performance usually depends on film morphology and its molecular structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fabrication of controlled molecular architectures is essential for organic devices, as is the case of emission of polarized light for the information industry. In this study, we show that optimized conditions can be established to allow layer-by-layer (LbL) films of poly(p-phenylene vinylene) (PPV)+dodecylbenzenesulfonate (DBS) to be obtained with anisotropic properties. Films with five layers and converted at 110 degrees C had a dichroic ratio delta = 2.3 and order parameter r = 34%, as indicated in optical spectroscopy and emission ellipsometry data. This anisotropy was decreased with the number of layers deposited, with delta = 1.0 for a 75-layer LbL PPV + DBS film. The analysis with atomic force microscopy showed the formation of polymer clusters in a random growth process with the normalized height distribution being represented by a Gaussian function. In spite of this randomness in film growth, the self-covariance function pointed to a correlation between clusters, especially for thick films. In summary, the LbL method may be exploited to obtain both anisotropic films with polarized emission and regular, nanostructured surfaces. (c) 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 206-213, 2011

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liposomes have been applied to many fields as nanocarriers, especially in drug delivery as active molecules may be entrapped either in their aqueous interior or onto the hydrophobic surface. In this paper we describe the fabrication of layer-by-layer (LbL) films made with liposomes incorporating the anti-inflammatory ibuprofen. The liposomes were made with dipalmitoyl phosphatidyl choline (DPPC), dipalmitoyl phosphatidyl glycerol (DPPG) and palmitoyl oleoyl phosphatidyl glycerol (POPG). LbL films were assembled via alternate adsorption of the polyamidoamine dendrimer (PAMAM), generation 4, and liposomes containing ibuprofen. According to dynamic light scattering measurements, the incorporation of ibuprofen caused DPPC and DPPG liposonnes to become more stable, with a decrease in diameter from 140 to 74 nm and 132 to 63 nm, respectively. In contrast, liposomes from POPG became less stable, with an increase in size from 110 to 160 nm after ibuprofen incorporation. These results were confirmed by atomic force microscopy images of LbL films, which showed a large tendency to rupture for POPG liposomes. Film growth was monitored using nanogravimetry and UV-Vis spectroscopy, indicating that growth stops after 10 bilayers. The release of ibuprofen obtained with fluorescence measurements was slower for the liposomes, with decay times of 9.2 and 8.5 h for DPPG and POPG liposomes, respectively, than for the free drug with a decay time of 5.2 h. Ibuprofen could also be released from the LbL films made with DPPG and POPG liposomes, which is promising for further uses in patches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrostatic layer-by-layer technique has been exploited as an useful strategy for fabrication of nanostructured thin films, in which specific properties can be controlled at the molecular level. Ferrofluids consist of a colloidal suspension of magnetic grains (with only a few nanometers of diameter) with present interesting physical properties and applications, ranging from telecommunication to drug delivery systems. In this article, we developed a new strategy to manipulate ferrofluids upon their immobilization in nanostructured layered films in conjunction with conventional polyelectrolytes using the layer-by-layer technique. We investigated the morphological, optical, and magnetic properties of the immobilized ferrofluid as a function of number of bilayers presented in the films. Ferrofluid/polyelectrolyte multilayers homogeneously covered the substrates surface, and the magnetic and optical properties of films exhibited a linear dependence on the number of bilayers adsorbed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statement of the problem: The performance of self-etch systems on enamel is controversial and seems to be dependent on the application technique and the enamel preparation. Purpose of the Study: To examine the effects of conditioning time and enamel surface preparation on bond strength and etching pattern of adhesive systems to enamel. Materials and Methods: Ninety-six teeth were divided into 16 conditions (N = 6) in function of enamel preparation and conditioning time for bond strength test. The adhesive systems OptiBond FL (Kerr, Orange, CA, USA), OptiBond SOLO Plus (Kerr), Clearfil SE Bond (Kuraray, Osaka, Japan), and Adper Prompt L-Pop (3M ESPE, St. Paul, MN, USA) were applied on unground or ground enamel following the manufacturers` directions or doubling the conditioning time. Cylinders of Filtek Flow (0.5-mm height) were applied to each bonded enamel surface using a Tygon tube (0.7 mm in diameter; Saint-Gobain Corp., Aurora, OH, USA). After storage (24 h/37 degrees C), the specimens were subjected to shear force (0.5 mm/min). The data were treated by a three-way analysis of variance and Tukey`s test (alpha = 0.05). The failure modes of the debonded interfaces and the etching pattern of adhesives were observed using scanning electron microscopy. Results: Only the main factor ""adhesive"" was statistically significant (p < 0.001). The lowest bond strength value was observed for OptiBond FL. The most defined etching pattern was observed for 35% phosphoric acid and for Adper Prompt L-Pop. Mixed failures were observed for all adhesives, but OptiBond FL showed cohesive failures in resin predominantly. Conclusions: The increase in the conditioning time as well as the enamel pretreatment did not provide an increase in the resin-enamel bond strength values for the studied adhesives. CLINICAL SIGNIFICANCE The surface enamel preparation and the conditioning time do not affect the performance of self-etch systems to enamel. (J Esthet Restor Dent 20:322-336, 2008)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, a new approach for the determination of the partition coefficient in different interfaces based on the density function theory is proposed. Our results for log P(ow) considering a n-octanol/water interface for a large super cell for acetone -0.30 (-0.24) and methane 0.95 (0.78) are comparable with the experimental data given in parenthesis. We believe that these differences are mainly related to the absence of van der Walls interactions and the limited number of molecules considered in the super cell. The numerical deviations are smaller than that observed for interpolation based tools. As the proposed model is parameter free, it is not limited to the n-octanol/water interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Artificial vesicles or liposomes composed of lipid bilayers have been widely exploited as building blocks for artificial membranes, in attempts to mimic membrane interaction with drugs and proteins and to investigate drug delivery processes. In this study we report on the immobilization of liposomes of 1,2-dipalmitoyi-sn-Glycero-3-[Phospho-rac-(1-glycerol)] (Sodium Salt) (DPPG) in layer-by-layer (LbL) films, alternated with poly (amidoamine) G4 (PAMAM) dendrimer layers. The average size of the liposomes in solution was 120 nm as determined by dynamic light scattering, with their spherical shape being inferred from scanning electron microscopy (SEM) in cast films. LbL films containing up to 20 PAMAM/DPPG bilayers were assembled onto glass and/or silicon wafer substrates. The growth of the multilayers was achieved by alternately immersing the substrates into the PAMAM and DPPG solutions for 5 and 10 min, respectively. The formation of PAMAM/DPPG liposome multilayers and its ability to interact with BSA were confirmed by Fourier transform infrared spectroscopy (FTIR). The structural features and film thickness were obtained using X-ray diffraction and surface plasmon resonance (SPR). (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vanadium pentoxide xerogels (VXG) incorporating meso(3- and 4-pyridyl)porphyrin cobalt(III) species coordinated to four [Ru(bipy)(2)Cl](+) complexes were employed as gas sensing materials capable of detecting small amounts of water in commercial ethanol and fuel supplies. According to their X-ray diffraction data, the original VXG lamellar framework was maintained in the nanocomposite material, but the interlamellar distance increased from 11.7 to 15.2 angstrom, reflecting the intercalation of the porphyrin species into the vanadium pentoxide matrix. The films generated by direct deposition of the nanocomposite aqueous suspensions exhibited good electrical and electrochemical performance for application in resistive sensors. The analysis of water in ethanol and fuels was carried out successfully using an especially designed electric setup incorporating a laminar gas flow chamber and interdigitated gold electrodes coated with the nanocomposites. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A conductive and electrochemically active composite material has been prepared by the combination of bentonite and nickel hydroxide precursor sol. This material exhibits the characteristic intercalation properties of the clay component and the electrochemical and optical properties of nickel hydroxide. The clay particles seem to induce the aggregation of nickel hydroxide, leading to the formation of a layer of alpha-Ni(OH)(2) exhibiting needle like morphology. The composite forms stable films and has been conveniently used for the preparation of modified electrodes exhibiting intercalation and electrochemical properties, thus providing an interesting material for the development of amperometric sensors. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper outlines the results obtained with biosensors designed for urea amperometric detection. The incorporation of urease into a bipolymeric substrate consisting of poly(pyrrole) and poly(5-amino-1-naphthol) was performed through four different approaches: direct adsorption, entrapment in cellulose acetate layer. cross-linking with glutaraldehyde, and also covalent attachment to the polymeric matrix. Poly(pyrrole) acts as amperometric transducer in these biosensors, while poly(5-amino-1-naphthol) drastically reduces the interference signal of agents such as ascorbic and uric acids. The biosensors containing urease covalently attached to the substrate provided interesting results in terms of sensitivity towards urea (0.50 mu A cm(-2) mmol(-1) L), lifetime (20 days) and short response times, due to the enzyme immobilization method used. All biosensors analyzed showed also a wide linear concentration range (up to 100 mmol L(-1)) and low detection limits (0.22-0.58 mmol L(-1)). (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper describes the immobilization of nanoparticles onto conducting substrates by using both electrostatic layer-by-layer and electrophoretic deposition (EPD) methods. These two techniques were compared in high-performance electrochromic electrodes based on mixed nickel hydroxide nanoparticles. In addition to easy handling, EPD seems to be the most suitable method for the immobilization of nanoparticles, leading to higher electrochromic efficiencies, lower response times and higher stability upon coloration and bleaching cycling. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, nanocomposites of polyaniline (PANI) and layered alpha-Zr(HPO4)(2).H2O (alpha-ZrP) were prepared using two different approaches: (i) the in situ aniline polymerization in the presence of the layered inorganic material and (ii) the layer-by-layer (LBL) assembly using an aqueous solution of the polycation emeraldine salt (ES-PANI) and a dispersion of exfoliated negative slabs of alpha-ZrP. These materials were characterized spectroscopically using mainly resonance Raman scattering at four exciting radiations and electronic absorption in the UV-VIS-NIR region. Structural and textural characterizations were carried out using powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The polymer obtained by the in situ aniline polymerization is located primarily in the external surface of the inorganic material although aniline monomers were intercalated between alpha-ZrP interlayer regions before oxidative polymerization. Through resonance Raman spectroscopy, it was observed that the formed polymer has semiquinone units (ES-PANI) and also azo bonds (-N = N-), showing that this method results in a polymer with a different structure from the usual ""head-to-tail"" ES-PANI. The LBL assembly of pre-formed ES-PANI and exfoliated alpha-ZrP particles produces homogeneous films with reproducible deposition from layer to layer, up to 20 bilayers. Resonance Raman (lambda(0) = 632.8 nm) spectrum of PANI/ZrP LBL film shows an enhancement in the intensity of the polaronic band at 1333 cm(-1) (nu C-N center dot+) and the decrease of the band intensity at 1485 cm(-1) compared to bulk ES-PANI. Its UV-VIS-NIR spectrum presents an absorption tail in the NIR region assigned to delocalized free charge carrier. These spectroscopic features are characteristic of highly conductive secondary doped PANI suggesting that polymeric chains in PANI/ZrP LBL film have a more extended conformation than in bulk ES-PANI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films of MnO(2) nanoparticles were grown using the layer-by-layer method with poly (diallyldimetylammonium) as the intercalated layer. The film growth was followed by UV-vis, electrochemical quartz crystal microbalance (EQCM), and atomic force microscopy. Linear growth due to electrostatic immobilization of layers was observed up to 30 bilayers, but electrical connectivity was maintained only for 12 MnO(2)/PPDA bilayers. The electrochemical characterization of this film in 1-butyl-2,3-dimethyl-imidazolium (BMMI) bis(trifluoromethanesulfonyl)imide (TFSI) (BMMITFSI) with and without addition of a lithium salt indicated a higher electrochemical response of the nanostructured electrode in the lithium-containing electrolyte. On the basis of EQCM experiments, it was possible to confirm that the charge compensation process is achieved mainly by the TFSI anion at short times (<2 s) and by BMMI and lithium cations at longer times. The fact that large ions like TFSI and BMMI participate in the electroneutrality is attributed to the redox reaction that occurs at the superficial sites and to the high concentration of these species compared to that of lithium cations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic and comprehensive study of the interaction of citrate-stabilized gold nanoparticles with triruthenium cluster complexes of general formula [Ru(3)(CH(3)COO)(6)(L)](+) [L = 4-cyanopyridine (4-CNpy), 4,4`-bipyridine (4,4`-bpy) or 4,4`-bis(pyridyl)ethylene (bpe)] has been carried out. The cluster-nanoparticle interaction in solution and the construction of thin films of the hybrid materials were investigated in detail by electronic and surface plasmon resonance (SPR) spectroscopy, Raman scattering spectroscopy and scanning electron microscopy (SEM). Citrate-stabilized gold nanoparticles readily interacted with [Ru(3)O(CH(3)COO)(6)(L)(3)](+) complexes to generate functionalized nanoparticles that tend to aggregate according to rates and extents that depend on the bond strength defined by the characteristics of the cluster L ligands following the sequence bpe > 4,4`-bpy >> 4-CNpy. The formation of compact thin films of hybrid AuNP/[Ru(3)O(CH(3)COO)(6)(L)(3)](+) derivatives with L = bpe and 4,4`-bpy indicated that the stability/lability of AuNP-cluster bonds as well as their solubility are important parameters that influence the film contruction process. Fluorine-doped tin oxide electrodes modified with thin films of these nanomaterials exhibited similar electrocatalytic activity but much higher sensitivity than a conventional gold electrode in the oxidation of nitrite ion to nitrate depending on the bridging cluster complex, demonstrating the high potential for the development of amperometric sensors.