996 resultados para Joint Implementation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report summarizes joint enrollment in Iowa's community colleges. Jointly enrolled students are high school students enrolled in community college credit coursework. This report contains fiscal year data for the state's 15 community colleges reported through the Community College Management Information System (MIS) and confirmed by each college.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presentation provides an overview of the copyright issues related to the implementation of Open Access policies. It focuses on the need to obtain permission to reproduce and disseminate a copy of any published paper taking into account any copyright transfer signed by authors. This permission is needed to implement Green Open Access policies through repositories. Moreover it explores the use of open content licenses in repositories and journals to move to the Gold Open Access model that offers not only free access to full text but full reuse of contributions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Technical challenges exist with infrastructure that can be addressed by nondestructive evaluation (NDE) methods, such as detecting corrosion damage to reinforcing steel that anchor concrete bridge railings to bridge road decks. Moisture and chloride ions reach the anchors along the cold joint between the rails and deck, causing corrosion that weakens the anchors and ultimately the barriers. The Center for Nondestructive Evaluation at Iowa State University has experience in development of measurement techniques and new sensors using a variety of interrogating energies. This research evaluated feasibility of three technologies — x-ray radiation, ground-penetrating radar (GPR), and magnetic flux leakage (MFL) — for detection and quantification of corrosion of embedded reinforcing steel. Controlled samples containing pristine reinforcing steel with and without epoxy and reinforcing steel with 25 percent and 50 percent section reduction were embedded in concrete at 2.5 in. deep for laboratory evaluation. Two of the techniques, GPR and MFL, were used in a limited field test on the Iowa Highway 210 Bridge over Interstate 35 in Story County. The methods provide useful and complementary information. GPR provides a rapid approach to identify reinforcing steel that has anomalous responses. MFL provides similar detection responses but could be optimized to provide more quantitative correlation to actual condition. Full implementation could use either GPR or MFL methods to identify areas of concern, followed by radiography to give a visual image of the actual condition, providing the final guidance for maintenance actions." The full 103 page report and the 2 page Tech Transfer Summary are included in this link.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Longitudinal joint quality control/assurance is essential to the successful performance of asphalt pavements and it has received considerable amount of attention in recent years. The purpose of the study is to evaluate the level of compaction at the longitudinal joint and determine the effect of segregation on the longitudinal joint performance. Five paving projects with the use of traditional butt joint, infrared joint heater, edge restraint by milling and modified butt joint with the hot pinch longitudinal joint construction techniques were selected in this study. For each project, field density and permeability tests were made and cores from the pavement were obtained for in-lab permeability, air void and indirect tensile strength. Asphalt content and gradations were also obtained to determine the joint segregation. In general, this study finds that the minimum required joint density should be around 90.0% of the theoretical maximum density based on the AASHTO T166 method. The restrained-edge by milling and butt joint with the infrared heat treatment construction methods both create the joint density higher than this 90.0% limit. Traditional butt joint exhibits lower density and higher permeability than the criterion. In addition, all of the projects appear to have segregation at the longitudinal joint except for the edge-restraint by milling method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FRAX(®) is a fracture risk assessment algorithm developed by the World Health Organization in cooperation with other medical organizations and societies. Using easily available clinical information and femoral neck bone mineral density (BMD) measured by dual-energy X-ray absorptiometry (DXA), when available, FRAX(®) is used to predict the 10-year probability of hip fracture and major osteoporotic fracture. These values may be included in country specific guidelines to aid clinicians in determining when fracture risk is sufficiently high that the patient is likely to benefit from pharmacological therapy to reduce that risk. Since the introduction of FRAX(®) into clinical practice, many practical clinical questions have arisen regarding its use. To address such questions, the International Society for Clinical Densitometry (ISCD) and International Osteoporosis Foundations (IOF) assigned task forces to review the best available medical evidence and make recommendations for optimal use of FRAX(®) in clinical practice. Questions were identified and divided into three general categories. A task force was assigned to investigating the medical evidence in each category and developing clinically useful recommendations. The BMD Task Force addressed issues that included the potential use of skeletal sites other than the femoral neck, the use of technologies other than DXA, and the deletion or addition of clinical data for FRAX(®) input. The evidence and recommendations were presented to a panel of experts at the ISCD-IOF FRAX(®) Position Development Conference, resulting in the development of ISCD-IOF Official Positions addressing FRAX(®)-related issues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is divided into three volumes: Volume I: Strain-Based Damage Detection; Volume II: Acceleration-Based Damage Detection; Volume III: Wireless Bridge Monitoring Hardware. Volume I: In this work, a previously-developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types, and communication network architecture. The statistical damage-detection tool, control-chart-based damage-detection methodologies, were further investigated and advanced. For the validation of the damage-detection approaches, strain data were obtained from a sacrificial specimen attached to the previously-utilized US 30 Bridge over the South Skunk River (in Ames, Iowa), which had simulated damage,. To provide for an enhanced ability to detect changes in the behavior of the structural system, various control chart rules were evaluated. False indications and true indications were studied to compare the damage detection ability in regard to each methodology and each control chart rule. An autonomous software program called Bridge Engineering Center Assessment Software (BECAS) was developed to control all aspects of the damage detection processes. BECAS requires no user intervention after initial configuration and training. Volume II: In this work, a previously developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types, and communication network architecture. The objective of this part of the project was to validate/integrate a vibration-based damage-detection algorithm with the strain-based methodology formulated by the Iowa State University Bridge Engineering Center. This report volume (Volume II) presents the use of vibration-based damage-detection approaches as local methods to quantify damage at critical areas in structures. Acceleration data were collected and analyzed to evaluate the relationships between sensors and with changes in environmental conditions. A sacrificial specimen was investigated to verify the damage-detection capabilities and this volume presents a transmissibility concept and damage-detection algorithm that show potential to sense local changes in the dynamic stiffness between points across a joint of a real structure. The validation and integration of the vibration-based and strain-based damage-detection methodologies will add significant value to Iowa’s current and future bridge maintenance, planning, and management Volume III: In this work, a previously developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types, and communication network architecture. This report volume (Volume III) summarizes the energy harvesting techniques and prototype development for a bridge monitoring system that uses wireless sensors. The wireless sensor nodes are used to collect strain measurements at critical locations on a bridge. The bridge monitoring hardware system consists of a base station and multiple self-powered wireless sensor nodes. The base station is responsible for the synchronization of data sampling on all nodes and data aggregation. Each wireless sensor node include a sensing element, a processing and wireless communication module, and an energy harvesting module. The hardware prototype for a wireless bridge monitoring system was developed and tested on the US 30 Bridge over the South Skunk River in Ames, Iowa. The functions and performance of the developed system, including strain data, energy harvesting capacity, and wireless transmission quality, were studied and are covered in this volume.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Predictive groundwater modeling requires accurate information about aquifer characteristics. Geophysical imaging is a powerful tool for delineating aquifer properties at an appropriate scale and resolution, but it suffers from problems of ambiguity. One way to overcome such limitations is to adopt a simultaneous multitechnique inversion strategy. We have developed a methodology for aquifer characterization based on structural joint inversion of multiple geophysical data sets followed by clustering to form zones and subsequent inversion for zonal parameters. Joint inversions based on cross-gradient structural constraints require less restrictive assumptions than, say, applying predefined petro-physical relationships and generally yield superior results. This approach has, for the first time, been applied to three geophysical data types in three dimensions. A classification scheme using maximum likelihood estimation is used to determine the parameters of a Gaussian mixture model that defines zonal geometries from joint-inversion tomograms. The resulting zones are used to estimate representative geophysical parameters of each zone, which are then used for field-scale petrophysical analysis. A synthetic study demonstrated how joint inversion of seismic and radar traveltimes and electrical resistance tomography (ERT) data greatly reduces misclassification of zones (down from 21.3% to 3.7%) and improves the accuracy of retrieved zonal parameters (from 1.8% to 0.3%) compared to individual inversions. We applied our scheme to a data set collected in northeastern Switzerland to delineate lithologic subunits within a gravel aquifer. The inversion models resolve three principal subhorizontal units along with some important 3D heterogeneity. Petro-physical analysis of the zonal parameters indicated approximately 30% variation in porosity within the gravel aquifer and an increasing fraction of finer sediments with depth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Usually the measurement of multi-segment foot and ankle complex kinematics is done with stationary motion capture devices which are limited to use in a gait laboratory. This study aimed to propose and validate a wearable system to measure the foot and ankle complex joint angles during gait in daily conditions, and then to investigate its suitability for clinical evaluations. The foot and ankle complex consisted of four segments (shank, hindfoot, forefoot, and toes), with an inertial measurement unit (3D gyroscopes and 3D accelerometers) attached to each segment. The angles between the four segments were calculated in the sagittal, coronal, and transverse planes using a new algorithm combining strap-down integration and detection of low-acceleration instants. To validate the joint angles measured by the wearable system, three subjects walked on a treadmill for five minutes at three different speeds. A camera-based stationary system that used a cluster of markers on each segment was used as a reference. To test the suitability of the system for clinical evaluation, the joint angle ranges were compared between a group of 10 healthy subjects and a group of 12 patients with ankle osteoarthritis, during two 50-m walking trials where the wearable system was attached to each subject. On average, over all joints and walking speeds, the RMS differences and correlation coefficients between the angular curves obtained using the wearable system and the stationary system were 1 deg and 0.93, respectively. Moreover, this system was able to detect significant alteration of foot and ankle function between the group of patients with ankle osteoarthritis and the group of healthy subjects. In conclusion, this wearable system was accurate and suitable for clinical evaluation when used to measure the multi-segment foot and ankle complex kinematics during long-distance walks in daily life conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rheumatoid arthritis is the only secondary cause of osteoporosis that is considered independent of bone density in the FRAX(®) algorithm. Although input for rheumatoid arthritis in FRAX(®) is a dichotomous variable, intuitively, one would expect that more severe or active disease would be associated with a greater risk for fracture. We reviewed the literature to determine if specific disease parameters or medication use could be used to better characterize fracture risk in individuals with rheumatoid arthritis. Although many studies document a correlation between various parameters of disease activity or severity and decreased bone density, fewer have associated these variables with fracture risk. We reviewed these studies in detail and concluded that disability measures such as HAQ (Health Assessment Questionnaire) and functional class do correlate with clinical fractures but not morphometric vertebral fractures. One large study found a strong correlation with duration of disease and fracture risk but additional studies are needed to confirm this. There was little evidence to correlate other measures of disease such as DAS (disease activity score), VAS (visual analogue scale), acute phase reactants, use of non-glucocorticoid medications and increased fracture risk. We concluded that FRAX(®) calculations may underestimate fracture probability in patients with impaired functional status from rheumatoid arthritis but that this could not be quantified at this time. At this time, other disease measures cannot be used for fracture prediction. However only a few, mostly small studies addressed other disease parameters and further research is needed. Additional questions for future research are suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Agenda 21 for the Geneva region is the results from a broad consultation process including all local actors. The article 12 stipulates that « the State facilitates possible synergies between economic activities in order to minimize their environmental impacts » thus opening the way for Industrial Ecology (IE) and Industrial Symbiosis (IS). An Advisory Board for Industrial Ecology and Industrial Symbiosis implementation was established in 2002 involving relevant government agencies. Regulatory and technical conditions for IS are studied in the Swiss context. Results reveal that the Swiss law on waste does not hinder by-product exchanges. Methodology and technical factors including geographic, qualitative, quantitative and economical aspects are detailed. The competition with waste operators in a highly developed recycling system is also tackled.The IS project develops an empirical and systematic method for detecting and implementing by-products synergies between industrial actors disseminated throughout the Geneva region. Database management tool for the treatment of input-output analysis data and GIS tools for detecting potentials industrial partners are constantly improved. Potential symbioses for 17 flows (including energy, water and material flows) are currently studied for implementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diagnosis of cystic fibrosis (CF) is often delayed because of the nonspecificity of a wide variety of clinical symptoms at disease onset. Newborn screening for CF has been advocated to reduce delays in diagnosis, facilitating preventive care for early respiratory and nutritional involvement. According to American and European consensus and experience of existing programs, a Swiss Nationwide Cystic Fibrosis Newborn Screening Program started in January 2011. Screening strategy combines two steps: an immunoreactive trypsinogen assay and DNA mutation analysis in dried blood samples at day 4 (Guthrie cards).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Well-conducted behavioural surveillance (BS) is essential for policy planning and evaluation. Data should be comparable across countries. In 2008, the European Centre for Disease Prevention and Control (ECDC) began a programme to support Member States in the implementation of BS for Second Generation Surveillance. Methods: Data from a mapping exercise on current BS activities in EU/EFTA countries led to recommendations for establishing national BS systems and international coordination, and the definition of a set of core and transversal (UNGASS-Dublin compatible) indicators for BS in the general and eight specific populations. A toolkit for establishing BS has been developed and a BS needs-assessment survey has been launched in 30 countries. Tools for BS self-assessment and planning are currently being tested during interactive workshops with country representatives. Results: The mapping exercise revealed extreme diversity between countries. Around half had established a BS system, but this did not always correspond to the epidemiological situation. Challenges to implementation and harmonisation at all levels emerged from survey findings and workshop feedback. These include: absence of synergy between biological and behavioural surveillance and of actors having an overall view of all system elements; lack of awareness of the relevance of BS and of coordination between agencies; insufficient use of available data; financial constraints; poor sustainability, data quality and access to certain key populations; unfavourable legislative environments. Conclusions: There is widespread need in the region not only for technical support but also for BS advocacy: BS remains the neglected partner of second generation surveillance and requires increased political support and capacity-building in order to become effective. Dissemination of validated tools for BS, developed in interaction with country experts, proves feasible and acceptable.