921 resultados para Instructional systems - Design


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, a nonlinear backstepping controller is designed for three-phase grid-connected solar photovoltaic (PV) systems to share active and reactive power. A cascaded control structure is considered for the purpose of sharing appropriate amount of power. In this cascaded control structure, the dc-link voltage controller is designed for balancing the power flow within the system and the current controller is designed to shape the grid current into a pure sinusoidal waveform. In order to balance the power flow, it is always essential to maintain a constant voltage across the dc-link capacitor for which an incremental conductance (IC) method is used in this paper. This approach also ensures the operation of solar PV arrays at the maximum power point (MPP) under rapidly changing atmospheric conditions. The proposed current controller is designed to guarantee the current injection into the grid in such a way that the system operates at a power factor other than unity which is essential for sharing active and reactive power. The performance of the proposed backstepping approach is verified on a three-phase grid-connected PV system under different atmospheric conditions. Simulation results show the effectiveness of the proposed control scheme in terms of achieving desired control objectives.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a nonlinear adaptive excitation control scheme to enhance the dynamic stability of multimachine power systems. The proposed controller is designed based on the adaptive backstepping technique where the mechanical power input to the generators and the damping coefficient of each generator are considered as unknown. These unknown quantities are estimated through the adaption laws. The adaption laws are obtained from the formulation of Lyapunov functions which guarantee the convergence of different physical quantities of generators such as the relative speed, terminal voltage, and electrical power output. The proposed scheme is evaluated by applying a three-phase short-circuit fault at one of the key transmission lines in an 11-bus test power system and compared with an existing backstepping controller and conventional power system stabilizer (CPSS). Simulation results show that the proposed scheme is much more effective than existing controllers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Partial state estimation of dynamical systems provides significant advantages in practical applications. Likewise, pre-compensator design for multi variable systems invokes considerable increase in the order of the original system. Hence, applying functional observer to pre-compensated systems can result in lower computational costs and more practicability in some applications such as fault diagnosis and output feedback control of these systems. In this note, functional observer design is investigated for pre-compensated systems. A lower order pre-compensator is designed based on a H2 norm optimization that is designed as the solution of a set of linear matrix inequalities (LMIs). Next, a minimum order functional observer is designed for the pre-compensated system. An LTI model of an irreversible chemical reactor is used to demonstrate our design algorithm, and to highlight the benefits of the proposed schemes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a nonlinear controller design for vehicle-to-grid (V2G) systems with LCL output filters. The V2G systems are modeled with LCL output filters in order to eliminate harmonics for improving power qualities and the nonlinear controller is designed based on the feedback linearization. The feasibility of using the appropriate feedback linearization approaches, either partial or exact, is also investigated through the feedback linearizability of V2G systems. In this paper, partial feedback linearization is used to design the controller with a capability of sharing both active and reactive power in V2G systems. The performance of the proposed controller controller is evaluated on a single-phase full-bridge converter-based V2G system with an LCL output filter and compared to that of without any filter. Simulation results clearly demonstrate the harmonic elimination capabilities of the proposed V2G structure with the proposed control scheme.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The work described in this thesis aims to support the distributed design of integrated systems and considers specifically the need for collaborative interaction among designers. Particular emphasis was given to issues which were only marginally considered in previous approaches, such as the abstraction of the distribution of design automation resources over the network, the possibility of both synchronous and asynchronous interaction among designers and the support for extensible design data models. Such issues demand a rather complex software infrastructure, as possible solutions must encompass a wide range of software modules: from user interfaces to middleware to databases. To build such structure, several engineering techniques were employed and some original solutions were devised. The core of the proposed solution is based in the joint application of two homonymic technologies: CAD Frameworks and object-oriented frameworks. The former concept was coined in the late 80's within the electronic design automation community and comprehends a layered software environment which aims to support CAD tool developers, CAD administrators/integrators and designers. The latter, developed during the last decade by the software engineering community, is a software architecture model to build extensible and reusable object-oriented software subsystems. In this work, we proposed to create an object-oriented framework which includes extensible sets of design data primitives and design tool building blocks. Such object-oriented framework is included within a CAD Framework, where it plays important roles on typical CAD Framework services such as design data representation and management, versioning, user interfaces, design management and tool integration. The implemented CAD Framework - named Cave2 - followed the classical layered architecture presented by Barnes, Harrison, Newton and Spickelmier, but the possibilities granted by the use of the object-oriented framework foundations allowed a series of improvements which were not available in previous approaches: - object-oriented frameworks are extensible by design, thus this should be also true regarding the implemented sets of design data primitives and design tool building blocks. This means that both the design representation model and the software modules dealing with it can be upgraded or adapted to a particular design methodology, and that such extensions and adaptations will still inherit the architectural and functional aspects implemented in the object-oriented framework foundation; - the design semantics and the design visualization are both part of the object-oriented framework, but in clearly separated models. This allows for different visualization strategies for a given design data set, which gives collaborating parties the flexibility to choose individual visualization settings; - the control of the consistency between semantics and visualization - a particularly important issue in a design environment with multiple views of a single design - is also included in the foundations of the object-oriented framework. Such mechanism is generic enough to be also used by further extensions of the design data model, as it is based on the inversion of control between view and semantics. The view receives the user input and propagates such event to the semantic model, which evaluates if a state change is possible. If positive, it triggers the change of state of both semantics and view. Our approach took advantage of such inversion of control and included an layer between semantics and view to take into account the possibility of multi-view consistency; - to optimize the consistency control mechanism between views and semantics, we propose an event-based approach that captures each discrete interaction of a designer with his/her respective design views. The information about each interaction is encapsulated inside an event object, which may be propagated to the design semantics - and thus to other possible views - according to the consistency policy which is being used. Furthermore, the use of event pools allows for a late synchronization between view and semantics in case of unavailability of a network connection between them; - the use of proxy objects raised significantly the abstraction of the integration of design automation resources, as either remote or local tools and services are accessed through method calls in a local object. The connection to remote tools and services using a look-up protocol also abstracted completely the network location of such resources, allowing for resource addition and removal during runtime; - the implemented CAD Framework is completely based on Java technology, so it relies on the Java Virtual Machine as the layer which grants the independence between the CAD Framework and the operating system. All such improvements contributed to a higher abstraction on the distribution of design automation resources and also introduced a new paradigm for the remote interaction between designers. The resulting CAD Framework is able to support fine-grained collaboration based on events, so every single design update performed by a designer can be propagated to the rest of the design team regardless of their location in the distributed environment. This can increase the group awareness and allow a richer transfer of experiences among them, improving significantly the collaboration potential when compared to previously proposed file-based or record-based approaches. Three different case studies were conducted to validate the proposed approach, each one focusing one a subset of the contributions of this thesis. The first one uses the proxy-based resource distribution architecture to implement a prototyping platform using reconfigurable hardware modules. The second one extends the foundations of the implemented object-oriented framework to support interface-based design. Such extensions - design representation primitives and tool blocks - are used to implement a design entry tool named IBlaDe, which allows the collaborative creation of functional and structural models of integrated systems. The third case study regards the possibility of integration of multimedia metadata to the design data model. Such possibility is explored in the frame of an online educational and training platform.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A Lyapunov-based stabilizing control design method for uncertain nonlinear dynamical systems using fuzzy models is proposed. The controller is constructed using a design model of the dynamical process to be controlled. The design model is obtained from the truth model using a fuzzy modeling approach. The truth model represents a detailed description of the process dynamics. The truth model is used in a simulation experiment to evaluate the performance of the controller design. A method for generating local models that constitute the design model is proposed. Sufficient conditions for stability and stabilizability of fuzzy models using fuzzy state-feedback controllers are given. The results obtained are illustrated with a numerical example involving a four-dimensional nonlinear model of a stick balancer.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper deals with the design of a network-on-chip reconfigurable pseudorandom number generation unit that can map and execute meta-heuristic algorithms in hardware. The unit can be configured to implement one of the following five linear generator algorithms: a multiplicative congruential, a mixed congruential, a standard multiple recursive, a mixed multiple recursive, and a multiply-with-carry. The generation unit can be used both as a pseudorandom and a message passing-based server, which is able to produce pseudorandom numbers on demand, sending them to the network-on-chip blocks that originate the service request. The generator architecture has been mapped to a field programmable gate array, and showed that millions of numbers in 32-, 64-, 96-, or 128-bit formats can be produced in tens of milliseconds. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A non-linear model is presented which optimizes the lay-out, as well as the design and management of trickle irrigation systems, to achieve maximum net benefit. The model consists of an objective function that maximizes profit at the farm level, subject to appropriate geometric and hydraulic constraints. It can be applied to rectangular shaped fields, with uniform or zero slope. The software used is the Gams-Minos package. The basic inputs are the crop-water-production function, the cost function and cost of system components, and design variables. The main outputs are the annual net benefit and pipe diameters and lengths. To illustrate the capability of the model, a sensitivity analysis of the annual net benefit for a citrus field is evaluated with respect to irrigated area, ground slope, micro-sprinkler discharge and shape of the field. The sensitivity analysis suggests that the greatest benefit is obtained with the smallest microsprinkler discharge, the greatest area, a square field and zero ground slope. The costs of the investment and energy are the components of the objective function that had the greatest effect in the 120 situations evaluated. (C) 1996 Academic Press Limited

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This article deals with some methodologies for economic and technical evaluations of cogeneration projects proposed by several authors. A discussion on design philosophy applied to thermal power plants leads to the decision problem of a conflicting, multiobjective formulation that includes the most important parameters. This model is formulated to help decision makers and designers in choosing compromise values for included parameters. (C) 1997 Elsevier B.V. Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

When an area to be irrigated has a high slope gradient in the manifold line direction, an option is to use a tapered pipeline to economize on pipe costs and to keep pressure head variations within desired limits. The objective of this paper is to develop a linear optimization model to design a microirrigation system with tapered, downhill manifold lines, minimizing the equivalent annual cost of the hydraulic network and the annual pumping cost, and maximizing the emission uniformity previously established to the subunit. The input data are irrigation system layout, cost of all hydraulic network components, and electricity price. The output data are equivalent annual cost, pipeline diameter in each line of the system, pressure head in each node, and total operating pressure head. To illustrate its capability, the model is applied in a citrus orchard in Sao, Paulo State, Brazil, considering slopes of 3, 6, and 9%. The model proved to be efficient in the design of the irrigation system in terms of the emission uniformity desired.