928 resultados para Imaginary conversations.
Resumo:
We study the linear m= 1 counter-rotating instability in a two-component, nearly Keplerian disc. Our goal is to understand these slow modes in discs orbiting massive black holes in galactic nuclei. They are of interest not only because they are of large spatial scale and can hence dominate observations but also because they can be growing modes that are readily excited by accretion events. Self-gravity being non-local, the eigenvalue problem results in a pair of coupled integral equations, which we derive for a two-component softened gravity disc. We solve this integral eigenvalue problem numerically for various values of mass fraction in the counter-rotating component. The eigenvalues are in general complex, being real only in the absence of the counter-rotating component, or imaginary when both components have identical surface density profiles. Our main results are as follows: (i) the pattern speed appears to be non-negative, with the growth (or damping) rate being larger for larger values of the pattern speed; (ii) for a given value of the pattern speed, the growth (or damping) rate increases as the mass in the counter-rotating component increases; (iii) the number of nodes of the eigenfunctions decreases with increasing pattern speed and growth rate. Observations of lopsided brightness distributions would then be dominated by modes with the least number of nodes, which also possess the largest pattern speeds and growth rates.
Resumo:
Dielectric measurements carried out on drop casted from solution of emeraldine base form of polyaniline films in the temperature range 30-300 degrees C revealed occurrence of two maxima in the loss tangent as a function of temperature. The activation energies corresponding to these two relaxation processes were found to be similar to 0.5 eV and similar to 1.5 eV. The occurrence of one relaxation peak in the dispersion curve of the imaginary part of the electric modulus suggests the absence of microphase separation in the film. Thermogravimetric analysis and infrared spectroscopic measurements showed that the films retained its integrity up to 300 degrees C. The dielectric relaxation at higher temperatures with large activation energy of 1.5 eV is attributed to increase in the barrier potential due to decrease in the polymer conjugation as a result of wide amplitude motion of the chain segments well above the glass transition temperature. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
The top polarization at the International Linear Collider (ILC) with transverse beam polarization is utilized in the process to probe interactions of the scalar and tensor type beyond the Standard Model and to disentangle their individual contributions. Confidence level limits of 90% are presented on the interactions with realistic integrated luminosity and are found to improve by an order of magnitude compared to the case when the spin of the top quark is not measured. Sensitivities of the order of a few times 10 (-aEuro parts per thousand 3) TeV (-aEuro parts per thousand 2) for real and imaginary parts of both scalar and tensor couplings at and 800 GeV with an integrated luminosity of 500 fb (-aEuro parts per thousand 1) and completely polarized beams are shown to be possible.
Resumo:
Optically clear glasses in the ZnO-Bi2O3-B2O3 (ZBBO) system were fabricated via the conventional melt-quenching technique. Dielectric constant and loss measurements carried out on ZBBO glasses unraveled nearly frequency (1 kHz-10 MHz)-independent dielectric characteristics associated with significantly low loss (D = 0.004). However, weak temperature response was found with temperature coefficient of dielectric constant 18 +/- 4 ppm A degrees C-1 in the 35-250 A degrees C temperature range. The conduction and relaxation phenomena were rationalized using universal AC conductivity power law and modulus formalism respectively. The activation energy for relaxation determined using imaginary parts of modulus peaks was 2.54 eV which was close to that of the DC conduction implying the involvement of similar energy barriers in both the processes. Stretched and power exponents were temperature dependent. The relaxation and conduction in these glasses were attributed to the hoping and migration of Bi3+ cations in their own and different local environment.
Resumo:
We present a novel approach to represent transients using spectral-domain amplitude-modulated/frequency -modulated (AM-FM) functions. The model is applied to the real and imaginary parts of the Fourier transform (FT) of the transient. The suitability of the model lies in the observation that since transients are well-localized in time, the real and imaginary parts of the Fourier spectrum have a modulation structure. The spectral AM is the envelope and the spectral FM is the group delay function. The group delay is estimated using spectral zero-crossings and the spectral envelope is estimated using a coherent demodulator. We show that the proposed technique is robust to additive noise. We present applications of the proposed technique to castanets and stop-consonants in speech.
Resumo:
The optical properties and electrical conductivity of highly conducting poly(3,4-ethylenedioxythiophene) (PEDOT) doped with poly(styrenesulfonate) (PSS) are reported as a function of the processing additive conditions. The addition of dimethyl sulfoxide (DMSO) increases the conductivity and modifies the dielectric response as observed from the ellipsometric studies. Also the surface roughness and morphology change with the composition of PEDOT: PSS: DMSO and film deposition conditions. The real part of the dielectric function becomes negative in highly conducting samples, indicating the presence of delocalized charge carriers. The real and imaginary parts of the refractive index were determined as a function of wavelength. The results are consistent with the increase in conductivity upon the addition of DMSO.
Resumo:
The nanocomposites of xTiO(2)+(1-x)Ni0.53Cu0.12Zn0.35Fe2O4 (where 0 <= x >= 1) were prepared using microwave hydrothermal (M H) method at 165 degrees C/45 min. The as-synthesized powders were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). The particle size of the powder varies from 18 to 35 nm. The as prepared powders were densified at 500 degrees C/30 min using microwave sintering method. The sintered composites were characterized by XRD and scanning electron microscopy (SEM). The bulk densities of the present composites were increasing with the addition of TiO2. The grain sizes of all the composite vary between 65 nm and 90 nm. The addition of TiO2 to ferrite increased the dielectric properties (epsilon' and epsilon `') also the resonant frequency of all the composites was found to be greater than 1 GHz. The imaginary part of permeability mu `' was found to increase with an increase of TiO2.
Resumo:
In contemporary world optoelectronics materials are used in daily life owing to its verity of applications. Utility of these materials makes them attractive for investigations. Specifically study regarding optical properties of recent developed materials is worth for technical uses. Therefore, this work demonstrates a comparative study of extinction coefficient (K), real dielectric (epsilon') and imaginary dielectric (epsilon `') constants, refractive index (n) and optical energy band gap (E-g) with structural unit < r > for Se98-xZn2Inx (0 <= X-In <= 10) and Se93-yZn2Te5Iny (0 <= Y-In <= 10) chalcogenide glasses. Fixed amount of Te with increasing In concentration as cost of Se is largely influence the optical parameters of the materials. Values of optical parameters are obtained higher and lower respectively at thresholds structural units values. This comparative study demonstrates that enhanced values of optical parameters have been obtained for Te containing Se-Zn-In glasses.
Resumo:
We investigate the gate-controlled direct band-to-band tunneling (BTBT) current in a graphene-boron nitride (G-BN) heterobilayer channel-based tunnel field effect transistor. We first study the imaginary band structure of hexagonal and Bernal-stacked heterobilayers by density functional theory, which is then used to evaluate the gate-controlled current under the Wentzel-Kramers-Brillouin approximation. It is shown that the direct BTBT is probable for a certain interlayer spacing of the G-BN which depends on the stacking orders.
Resumo:
Ellipsometric measurements in a wide spectral range (from 0.05 to 6.5 eV) have been carried out on the organic semiconducting polymer, poly2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene-vinylene] (MDMO-PPV), in both undoped and doped states. The real and imaginary parts of the dielectric function and the refractive index are determined accurately, provided that the layer thickness is measured independently. After doping, the optical properties show the presence of new peaks, which could be well-resolved by spectroscopic ellipsometry. Also for the doped material, the complex refractive index, with respect to the dielectric function, has been determined. The broadening of the optical transitions is due to the delocalization of polarons at higher doping level. The detailed information about the dielectric function as well as refractive index function obtained by spectroscopic ellipsometry allows not only qualitative but also quantitative description of the optical properties of the undoped/doped polymer. For the direct characterization of the optical properties of MDMO-PPV, ellipsometry turns out to be advantageous compared to conventional reflection and transmission measurements.
Resumo:
An anthracene-containing poly(arylene-ethynylene)-alt-poly(arylene-vinylene) (PAE-PAV) of general constitutional unit (PhCCAnthrCCPhCHCHAnthrCHCH)(n) bearing two 2-ethylhexyloxy solubilizing side chains on each phenylene (Ph) unit has been synthesized and characterized. The basic electrochemical characterization was done, showing the existence of two non-reversible oxidation and one reversible reduction peaks. The optical properties, the real and imaginary part of the dielectric function, were probed using spectroscopic ellipsometry (SE). The vibrational structure of the undoped/doped polymer was investigated using Fourier transformed infrared spectroscopy. A strong change in the polaronic absorption was observed during the doping, which after modeling revealed the existence of two separated transitions. The optical changes upon doping were additionally recorded using the SE technique. Similar to the results from FT-IR spectroscopy, two new in-the-gap absorptions were found. Moreover, the electrical conductivity as well as the mobility of positive carriers were measured. In the undoped state, the conductivity of the polymer was found to be below the detection limit (
Resumo:
The frequency-dependent dielectric relaxation of Pb0.94Sr0.06](Mn1/3Sb2/3)(0.05)(Zr0.52Ti0.48)(0.95)]O-3 ceramics, synthesized in pure perovskite phase by a solid-state reaction technique is investigated in the temperature range from 303 to 773 K by alternating-current impedance spectroscopy. Using Cole-Cole model, an analysis of the imaginary part of the dielectric permittivity with frequency is performed assuming a distribution of relaxation times. The scaling behavior of the imaginary part of the electric modulus suggests that the relaxation describes the same mechanism at various temperatures. The variation of dielectric constant with temperature is explained considering the space-charge polarization. The SEM indicates that the sample has single phase with an average grain size similar to 14.2 mu m. The material exhibits tetragonal structure. A detailed temperature dependent dielectric study at various frequencies has also been performed. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Results of frequency-dependent and temperature-dependent dielectric measurements performed on the double-perovskite Tb2NiMnO6 are presented. The real (epsilon(1)(f,T)) and imaginary (epsilon(2)(f,T)) parts of dielectric permittivity show three plateaus suggesting dielectric relaxation originating from the bulk, grain boundaries and the sample-electrode interfaces, respectively. The epsilon(1)(f,T) and epsilon(2)(f,T) are successfully simulated by a RC circuit model. The complex plane of impedance, Z'-Z `', is simulated using a series network with a resistor R and a constant phase element. Through the analysis of epsilon(f,T) using the modified Debye model, two different relaxation time regimes separated by a characteristic temperature, T*, are identified. The temperature variation of R and C corresponding to the bulk and the parameter alpha from modified Debye fit lend support to this hypothesis. Interestingly, the T* compares with the Griffiths temperature for this compound observed in magnetic measurements. Though these results cannot be interpreted as magnetoelectric coupling, the relationship between lattice and magnetism is markedly clear. We assume that the observed features have their origin in the polar nanoregions which originate from the inherent cationic defect structure of double perovskites. Copyright (C) EPLA, 2013
Resumo:
Solid diffusion couple experiments are conducted to analyse the growth mechanism of the phases and the diffusion mechanism of the components in the Ti-Si system. The calculation of the parabolic growth constants and the integrated diffusion coefficients substantiates that the analysis is intrinsically prone to erroneous conclusions if it is based on just the parabolic growth constants determined for a multiphase interdiffusion zone. The location of the marker plane is detected based on the uniform grain morphology in the TiSi2 phase, which indicates that this phase grows mainly because of Si diffusion. The growth mechanism of the phases and morphological evolution in the interdiffusion zone are explained with the help of imaginary diffusion couples. The activation enthalpies for the integrated diffusion coefficient of TiSi2 and the Si tracer diffusion are calculated as 190 +/- 9 and 197 +/- 8 kJ/mol, respectively. The crystal structure, details on the nearest neighbours of the components, and their relative mobilities indicate that the vacancies are mainly present on the Si sublattice.
Resumo:
BiEuO3 (BE) and BiGdO3 (BG) are synthesized by the solid-state reaction technique. Rietveld refinement of the X-ray diffraction data shows that the samples are crystallized in cubic phase at room temperature having Fm3m symmetry with the lattice parameters of 5.4925(2) and 5.4712(2) A for BE and BG, respectively. Raman spectra of the samples are investigated to obtain the phonon modes of the samples. The dielectric properties of the samples are investigated in the frequency range from 42 Hz to 1.1 MHz and in the temperature range from 303 K to 673 K. An analysis of the real and imaginary parts of impedance is performed assuming a distribution of relaxation times as confirmed by the Cole-Cole plots. The frequency-dependent maxima in the loss tangent are found to obey an Arrhenius law with activation energy similar to 1 eV for both the samples. The frequency-dependent electrical data are also analyzed in the framework of conductivity formalism. Magnetization of the samples are measured under the field cooled (EC) and zero field cooled (ZFC) modes in the temperature range from 5 K to 300 K applying a magnetic Field of 500 Oe. The FC and ZFC susceptibilities show that BE is a Van Vleck paramagnetic material with antiferromagnetic coupling at low temperature whereas BG is an anti-ferromagnetic system. The results are substantiated by the M-11 loops of the materials taken at 5 K in the ZFC mode. (C) 2014 Elsevier B.V. All rights reserved