952 resultados para Image Classification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

En aquest article es fa una descripció dels procediments realitzats per enregistrar dues imatges geomètricament, de forma automàtica, si es pren la primera com a imatge de referència. Es comparen els resultats obtinguts mitjançant tres mètodes. El primer mètode és el d’enregistrament clàssic en domini espacial maximitzant la correlació creuada (MCC)[1]. El segon mètode es basa en aplicar l’enregistrament MCC conjuntament amb un anàlisi multiescala a partir de transformades wavelet [2]. El tercer mètode és una variant de l’anterior que es situa a mig camí dels dos. Per cada un dels mètodes s’obté una estimació dels coeficients de la transformació que relaciona les dues imatges. A continuació es transforma per cada cas la segona imatge i es georeferencia respecte la primera. I per acabar es proposen unes mesures quantitatives que permeten discutir i comparar els resultats obtinguts amb cada mètode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Un dels principals problemes de la interacció dels robots autònoms és el coneixement de l'escena. El reconeixement és fonamental per a solucionar aquest problema i permetre als robots interactuar en un escenari no controlat. En aquest document presentem una aplicació pràctica de la captura d'objectes, de la normalització i de la classificació de senyals triangulars i circulars. El sistema s'introdueix en el robot Aibo de Sony per a millorar-ne la interacció. La metodologia presentada s'ha comprobat en simulacions i problemes de categorització reals, com ara la classificació de senyals de trànsit, amb resultats molt prometedors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Landscape classification tackles issues related to the representation and analysis of continuous and variable ecological data. In this study, a methodology is created in order to define topo-climatic landscapes (TCL) in the north-west of Catalonia (north-east of the Iberian Peninsula). TCLs relate the ecological behaviour of a landscape in terms of topography, physiognomy and climate, which compound the main drivers of an ecosystem. Selected variables are derived from different sources such as remote sensing and climatic atlas. The proposed methodology combines unsupervised interative cluster classification with a supervised fuzzy classification. As a result, 28 TCLs have been found for the study area which may be differentiated in terms of vegetation physiognomy and vegetation altitudinal range type. Furthermore a hierarchy among TCLs is set, enabling the merging of clusters and allowing for changes of scale. Through the topo-climatic landscape map, managers may identify patches with similar environmental conditions and asses at the same time the uncertainty involved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We determine he optimal combination of a universal benefit, B, and categorical benefit, C, for an economy in which individuals differ in both their ability to work - modelled as an exogenous zero quantity constraint on labour supply - and, conditional on being able to work, their productivity at work. C is targeted at those unable to work, and is conditioned in two dimensions: ex-ante an individual must be unable to work and be awarded the benefit, whilst ex-post a recipient must not subsequently work. However, the ex-ante conditionality may be imperfectly enforced due to Type I (false rejection) and Type II (false award) classification errors, whilst, in addition, the ex-post conditionality may be imperfectly enforced. If there are no classification errors - and thus no enforcement issues - it is always optimal to set C>0, whilst B=0 only if the benefit budget is sufficiently small. However, when classification errors occur, B=0 only if there are no Type I errors and the benefit budget is sufficiently small, while the conditions under which C>0 depend on the enforcement of the ex-post conditionality. We consider two discrete alternatives. Under No Enforcement C>0 only if the test administering C has some discriminatory power. In addition, social welfare is decreasing in the propensity to make each type error. However, under Full Enforcement C>0 for all levels of discriminatory power. Furthermore, whilst social welfare is decreasing in the propensity to make Type I errors, there are certain conditions under which it is increasing in the propensity to make Type II errors. This implies that there may be conditions under which it would be welfare enhancing to lower the chosen eligibility threshold - support the suggestion by Goodin (1985) to "err on the side of kindness".

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: As part of the MicroArray Quality Control (MAQC)-II project, this analysis examines how the choice of univariate feature-selection methods and classification algorithms may influence the performance of genomic predictors under varying degrees of prediction difficulty represented by three clinically relevant endpoints. Methods: We used gene-expression data from 230 breast cancers (grouped into training and independent validation sets), and we examined 40 predictors (five univariate feature-selection methods combined with eight different classifiers) for each of the three endpoints. Their classification performance was estimated on the training set by using two different resampling methods and compared with the accuracy observed in the independent validation set. Results: A ranking of the three classification problems was obtained, and the performance of 120 models was estimated and assessed on an independent validation set. The bootstrapping estimates were closer to the validation performance than were the cross-validation estimates. The required sample size for each endpoint was estimated, and both gene-level and pathway-level analyses were performed on the obtained models. Conclusions: We showed that genomic predictor accuracy is determined largely by an interplay between sample size and classification difficulty. Variations on univariate feature-selection methods and choice of classification algorithm have only a modest impact on predictor performance, and several statistically equally good predictors can be developed for any given classification problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to characterize, and compare different morphological types of hemocytes of Rhodnius prolixus, Rhodnius, Rhodnius neglectus, Triatoma infestans, Panstrongylus megistus, and Dipetalogaster maximus. This information provides the basis for studying the cellular immune systems of these insects. Seven morphological hemocyte types wereidentified by phase-contrast microscopy: prohemocytes, plasmatocytes, granular cells, cytocytes, oenocytoids, adipohemocytes and giant cells. All seven types of hemocytes are not present in every species. For example, adipohemocytes and oenocytoids were not observed in P. megistus and P. infestans, and giant cells were rarely found in any of the species studied. The hemocytes of rhodnius and Dipetalogaster are more similar to each other than those from Triatoma and Panstrongylus which in turn closely resemble each other. Emphasis is placed on methodological problems arising in this work wicah are discussed in detail.