954 resultados para Human-melanoma Cells
Resumo:
The number and activity of natural killer (NK) cells were studied in 34 untreated patients with paracoccidioidomycosis, 20 with the chronic form of the disease and 14 with the acute form. NK cells were detected with monoclonal antibody Leu-11c and the cytotoxic activity was measured using a single cell assay against K562 target cells. Both groups of patients had an increased number of circulating NK cells, their cytotoxic activity being significantly lower than in the healthy controls. These findings may be of importance in the immunological disturbances associated with paracoccidioidomycosis since NK cells exert important immune effector functions and may play a role in resistance against Paracoccidioides brasiliensis.
Resumo:
Propolis has been used in folk medicine in different regions of the world including Latin America. Propolis is a resinous mixture of substances collected by honey bees from several botanical sources, and its composition contains a rich chemical variety, depending on the geographical area and plant sources. Our aim was to compare the modulatory effect of propolis samples from three different countries of Latin America (Brazil, Cuba and Mexico) on pro- and anti-inflammatory cytokine production (tumor necrosis factor (TNF)-α and interleukin (IL)-10, respectively) by human monocytes. Cells were incubated with propolis for 18 h at 37°C. Cell viability was assessed by 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide method, and cytokine production was determined by ELISA. All samples did not affect monocyte viability. Brazilian propolis stimulated both TNF-α and IL-10 production by monocytes. Cuban propolis stimulated TNF-α and inhibited IL-10 production, while Mexican sample exerted the opposite effect, inhibiting TNF-α and stimulating IL-10 production. The major compounds found in Brazilian, Cuban and Mexican propolis samples were artepillin C, isoflavonoids and pinocembrin, respectively. Brazilian, Cuban and Mexican propolis contained different components that may exert pro- and anti-inflammatory activity depending on concentration, what may provide a novel approach to the development of immunomodulatory drugs containing propolis.
Resumo:
The transcription factor B lymphocyte induced maturation protein-1 (Blimp-1) plays important roles in embryonic development and immunity. Blimp-1 is required for the differentiation of plasma cells, and mice with T cell specific deletion of Blimp-1 (Blimp-1CKO mice) develop a fatal inflammatory response in the colon. Previous work demonstrated that lack of Blimp-1 in CD4(+) and CD8(+) T cells leads to intrinsic functional defects, but little is known about the functional role of Blimp-1 in regulating differentiation of Th cells in vivo and their contribution to the chronic intestinal inflammation observed in the Blimp1CKO mice. In this study, we show that Blimp-1 is required to restrain the production of the inflammatory cytokine IL-17 by Th cells in vivo. Blimp-1CKO mice have greater numbers of IL-17 producing TCR beta(+)CD4(+)cells in lymphoid organs and in the intestinal mucosa. The increase in IL-17 producing cells was not restored to normal levels in wild-type and Blimp-1CKO mixed bone marrow chimeric mice, suggesting an intrinsic role for Blimp-1 in constraining the production of IL-17 in vivo. The observation that Blimp-1 deficient CD4(+) T cells are more prone to differentiate into IL-17(+)/IFN-gamma(+) cells and cause severe colitis when transferred to Rag1-deficient mice provides further evidence that Blimp-1 represses IL-17 production. Analysis of Blimp-1 expression at the single cell level during Th differentiation reveals that Blimp-1 expression is induced in Th1 and Th2 but repressed by TGF-beta in Th17 cells. Collectively, the results described here establish a new role for Blimp-1 in regulating IL-17 production in vivo. The Journal of Immunology, 2012,189: 5682-5693.
Resumo:
IgA nephropathy (IgAN), the most common primary glomerulonephritis worldwide, has significant morbidity and mortality as 20-40% of patients progress to end-stage renal disease within 20 years of onset. In order to gain insight into the molecular mechanisms involved in the progression of IgAN, we systematically evaluated renal biopsies from such patients. This showed that the MAPK/ERK signaling pathway was activated in the mesangium of patients presenting with over 1 g/day proteinuria and elevated blood pressure, but absent in biopsy specimens of patients with IgAN and modest proteinuria (<1 g/day). ERK activation was not associated with elevated galactose-deficient IgA1 or IgG specific for galactose-deficient IgA1 in the serum. In human mesangial cells in vitro, ERK activation through mesangial IgA1 receptor (CD71) controlled pro-inflammatory cytokine secretion and was induced by large-molecular-mass IgA1-containing circulating immune complexes purified from patient sera. Moreover, IgA1-dependent ERK activation required renin-angiotensin system as its blockade was efficient in reducing proteinuria in those patients exhibiting substantial mesangial activation of ERK. Thus, ERK activation alters mesangial cell-podocyte crosstalk, leading to renal dysfunction in IgAN. Assessment of MAPK/ERK activation in diagnostic renal biopsies may predict the therapeutic efficacy of renin-angiotensin system blockers in IgAN. Kidney International (2012) 82, 1284-1296; doi:10.1038/ki.2012.192; published online 5 September 2012
Resumo:
Bradykinin is not only important for inflammation and blood pressure regulation, but also involved in neuromodulation and neuroprotection. Here we describe novel functions for bradykinin and the kinin-B2 receptor (B2BkR) in differentiation of neural stem cells. In the presence of the B2BkR antagonist HOE-140 during rat neurosphere differentiation, neuron-specific beta 3-tubulin and enolase expression was reduced together with an increase in glial protein expression, indicating that bradykinin- induced receptor activity contributes to neurogenesis. In agreement, HOE-140 affected in the same way expression levels of neural markers during neural differentiation of murine P19 and human iPS cells. Kinin-B1 receptor agonists and antagonists did not affect expression levels of neural markers, suggesting that bradykinin-mediated effects are exclusively mediated via B2BkR. Neurogenesis was augmented by bradykinin in the middle and late stages of the differentiation process. Chronic treatment with HOE-140 diminished eNOS and nNOS as well as M1-M4 muscarinic receptor expression and also affected purinergic receptor expression and activity. Neurogenesis, gliogenesis, and neural migration were altered during differentiation of neurospheres isolated from B2BkR knock-out mice. Whole mount in situ hybridization revealed the presence of B2BkR mRNA throughout the nervous system in mouse embryos, and less beta 3-tubulin and more glial proteins were expressed in developing and adult B2BkR knock-out mice brains. As a underlying transcriptional mechanism for neural fate determination, HOE-140 induced up-regulation of Notch1 and Stat3 gene expression. Because pharmacological treatments did not affect cell viability and proliferation, we conclude that bradykinin-induced signaling provides a switch for neural fate determination and specification of neurotransmitter receptor expression.
Resumo:
The aims of this study were two fold; to develop magnetoliposomes (MLs) loaded with zinc phthalocyanine (ZnPc) complexed with cucurbituril (CB) (CB:ZnPc-MLs) and to evaluate their in vitro photodynamic (PD) and/or hyperthermia (HT) effects while using melanoma cells (B16-F10) as model. The liposomal formulations were characterized by both average diameter and zeta potential. The vesicle average size ranged from 150 to 200 nm and the polydispersity index (PdI) from 0.093 to 0.230. The zeta potential was significantly positive with values between 48 and 57 mV. The cell viability (CV) after PD and HT treatments was assessed by colorimetric MTI method. Melanoma cells were initially treated with the liposome formulation without light and magnetic field application, revealing cell viability not different from the control cells (p > 0.05). Photodynamic and hyperthermia assays were also applied separately, demonstrating that PD is more effective than HT in reducing the CV of the neoplastic cells. Combined application of both PD and HT treatments was even more effective in reducing the CV of B16-F10 cells. At the highest light dose (2 J/cm(2)) and under magnetic field activation the CV was about half than PD applied alone. Therefore, the use of the photosensitizer-loaded magnetoliposome for combined photodynamic therapy (PDT) and magnetohyperthermia (MHT) application can be considered as a potential tool to treat malignant melanoma. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Ruthenium compounds of the type trans-[Ru(NO)(NH3)(4)(L)] X-3, L = N-heterocyclic ligands, P(OEt)(3), SO32-, X BF4- or PF6-, or [Ru(NO)Hedta], were tested for antitumour activity in vitro against murine melanoma and human tumour cells. The ruthenium complexes induced DNA fragmentation and morphological alterations suggestive of necrotic tumour cell death. The calculated IC50 values were lower than 100 mu M. Complexes for which L = isn or imN were partially effective in vivo in a syngeneic model of murine melanoma B16F10, increasing animal survival. In addition, the same ruthenium complexes effectively inhibited angiogenesis of HUVEC cells in vitro. The results suggest that these nitrosyl complexes are a promising platform to be explored for the development of novel antitumour agents.
Resumo:
Elevated levels of copper have been detected in various types of human cancer cells, such as breast cancer cells, and a number of mechanisms have been proposed to explain the action and influence of copper on tumor progress. In this work, we found that stimulating the proliferation of mammary epithelial MCF7 cells with the high-redox-potential copper complex Cu (GlyGlyHis) is associated with the copper-induced intracellular generation of reactive oxygen species (ROS) that induces lipid peroxidation and causes increased roughness of external cell membranes, which leads to the formation of larger cell domes. The results presented herein provide new insights into the molecular link between copper and the proliferation of breast cancer cells and, consequently, into the mechanism by which changes in redox balance and ROS accumulation regulates cell membrane roughness. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Melanins have been associated with the development of melanoma and its resistance to photodynamic therapy (PDT). Singlet molecular oxygen (102), which is produced by ultraviolet A solar radiation and the PDT system, is also involved. Here, we investigated the effects that these factors have on DNA damage and repair. Our results show that both types of melanin (eumelanin and pheomelanin) lead to DNA breakage in the absence of light irradiation and that eumelanin is more harmful than pheomelanin. Interestingly, melanins were found to bind to the minor grooves of DNA, guaranteeing close proximity to DNA and potentially causing the observed high levels of strand breaks. We also show that the interaction of melanins with DNA can impair the access of repair enzymes to lesions, contributing to the perpetuation of DNA damage. Moreover, we found that after melanins interact with 102, they exhibit a lower ability to induce DNA breakage; we propose that these effects are due to modifications of their structure. Together, our data highlight the different modes of action of the two types of melanin. Our results may have profound implications for cellular redox homeostasis, under conditions of induced melanin synthesis and irradiation with solar light. These results may also be applied to the development of protocols to sensitize melanoma cells to PDT. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
Abstract Background It has been speculated that the biostimulatory effect of Low Level Laser Therapy could cause undesirable enhancement of tumor growth in neoplastic diseases. The aim of the present study is to analyze the behavior of melanoma cells (B16F10) in vitro and the in vivo development of melanoma in mice after laser irradiation. Methods We performed a controlled in vitro study on B16F10 melanoma cells to investigate cell viability and cell cycle changes by the Tripan Blue, MTT and cell quest histogram tests at 24, 48 and 72 h post irradiation. The in vivo mouse model (male Balb C, n = 21) of melanoma was used to analyze tumor volume and histological characteristics. Laser irradiation was performed three times (once a day for three consecutive days) with a 660 nm 50 mW CW laser, beam spot size 2 mm2, irradiance 2.5 W/cm2 and irradiation times of 60s (dose 150 J/cm2) and 420s (dose 1050 J/cm2) respectively. Results There were no statistically significant differences between the in vitro groups, except for an increase in the hypodiploid melanoma cells (8.48 ± 1.40% and 4.26 ± 0.60%) at 72 h post-irradiation. This cancer-protective effect was not reproduced in the in vivo experiment where outcome measures for the 150 J/cm2 dose group were not significantly different from controls. For the 1050 J/cm2 dose group, there were significant increases in tumor volume, blood vessels and cell abnormalities compared to the other groups. Conclusion LLLT Irradiation should be avoided over melanomas as the combination of high irradiance (2.5 W/cm2) and high dose (1050 J/cm2) significantly increases melanoma tumor growth in vivo.
Resumo:
Abstract Background ADAMTS-1 (a disintegrin and metalloprotease with thrombospondin motifs) is a member of the ADAMTS family of metalloproteases. Here, we investigated mRNA and protein levels of ADAMTS-1 in normal and neoplastic tissues using qPCR, immunohistochemistry and immunoblot analyses, and we addressed the role of ADAMTS-1 in regulating migration, invasion and invadopodia formation in breast tumor cell lines. Results In a series of primary breast tumors, we observed variable levels of ADAMTS-1 mRNA expression but lower levels of ADAMTS-1 protein expression in human breast cancers as compared to normal tissue, with a striking decrease observed in high-malignancy cases (triple-negative for estrogen, progesterone and Her-2). This result prompted us to analyze the effect of ADAMTS-1 knockdown in breast cancer cells in vitro. MDA-MB-231 cells with depleted ADAMTS-1 expression demonstrated increased migration, invasion and invadopodia formation. The regulatory mechanisms underlying the effects of ADAMTS-1 may be related to VEGF, a growth factor involved in migration and invasion. MDA-MB-231 cells with depleted ADAMTS-1 showed increased VEGF concentrations in conditioned medium capable of inducing human endothelial cells (HUVEC) tubulogenesis. Furthermore, expression of the VEGF receptor (VEGFR2) was increased in MDA-MB-231 cells as compared to MCF7 cells. To further determine the relationship between ADAMTS-1 and VEGF regulating breast cancer cells, MDA-MB-231 cells with reduced expression of ADAMTS-1 were pretreated with a function-blocking antibody against VEGF and then tested in migration and invasion assays; both were partially rescued to control levels. Conclusions ADAMTS-1 expression was decreased in human breast tumors, and ADAMTS-1 knockdown stimulated migration, invasion and invadopodia formation in breast cancer cells in vitro. Therefore, this series of experiments suggests that VEGF is involved in the effects mediated by ADAMTS-1 in breast cancer cells.
Resumo:
Exosomes (Exos) are secreted nanovesicles that contain membrane proteins and genetic material, which can be transferred between cells and contribute to their communication in the body. We show that Exos, obtained from mature human dendritic cells (DCs), are incorporated by tumour cells, which after Exos treatment, acquire the expression of HLA‐class I, HLA‐class II, CD86, CD11c, CD54 and CD18. This incorporation reaches its peak eight hours after treatment, can be observed in different cell tumour lines (SK‐BR‐3, U87 and K562) and could be a means to transform non‐immunogenic into immunogenic tumour cells. Interestingly, tetraspanins, which are expressed by the tumour cells, have their surface level decreased after Exo treatment. Furthermore, the intensity of Exo incorporation by the different tumour cell lines was proportional to their CD9 expression levels and pretreatment of Exos with anti‐CD9 decreased their incorporation (by SK‐BR‐3 cells). This modification of tumour cells by DC‐derived Exos may allow their use in new immunotherapeutic approaches to cancer. Furthermore, by showing the involvement of CD9 in this incorporation, we provide a possible selection criterion for tumours to be addressed by this strategy
Resumo:
DNA damage induced by ultraviolet (UV) radiation can be removed by nucleotide excision repair through two sub-pathways, one general (GGR) and the other specific for transcribed DNA (TCR), and the processing of unrepaired lesions trigger signals that may lead to cell death. These signals involve the tumor suppressor p53 protein, a central regulator of cell responses to DNA damage, and the E3 ubiquitin ligase Mdm2, that forms a feedback regulatory loop with p53. The involvement of cell cycle and transcription on the signaling to apoptosis was investigated in UVB-irradiated synchronized, DNA repair proficient, CS-B (TCR-deficient) and XP-C (GGR-deficient) primary human fibroblasts. Cells were irradiated in the G1 phase of the cell cycle, with two doses with equivalent levels of apoptosis (low and high), defined for each cell line. In the three cell lines, the low doses of UVB caused only a transient delay in progression to the S phase, whereas the high doses induced permanent cell cycle arrest. However, while accumulation of Mdm2 correlated well with the recovery from transcription inhibition at the low doses for normal and CS-B fibroblasts, for XP-C cells this protein was shown to be accumulated even at UVB doses that induced high levels of apoptosis. Thus, UVB-induced accumulation of Mdm2 is critical for counteracting p53 activation and apoptosis avoidance, but its effect is limited due to transcription inhibition. However, in the case of XP-C cells, an excess of unrepaired DNA damage would be sufficient to block S phase progression, which would signal to apoptosis, independent of Mdm2 accumulation. The data clearly discriminate DNA damage signals that lead to cell death, depending on the presence of UVB-induced DNA damage in replicating or transcribing regions.
Resumo:
Diese Zusammenfassung der kumulativen Habilitationsschrift bezieht sich auf folgende Originalarbeiten:
Resumo:
In dieser Arbeit wurde die Rolle des Epstein-Barr Virus induzierten Gens 3 in einem Mausmodel des durch B16-F10 Zellen hervorgerufenen metastasierenden Melanoms untersucht. Das von aktivierten antigenpräsentierenden Zellen exprimierte EBI-3 gehört zur Familie der löslichen Typ 1 Zytokinrezeptoren, weist eine hohe Homologie zur p40 Untereinheit des IL-12 auf und bildet zusammen mit p28 das IL-27. Die intravenöse Injektion der B16-F10 Zelllinie führte zu einer signifikanten Erniedrigung der Tumormetastasen in den EBI-3 defizienten Lungen sowie zu einer höheren Lebenserwartung dieser Mäuse im Vergleich zu den B6 Wildtypen. Darüber hinaus habe ich in den EBI-3 defizienten Mäusen eine verminderte VCAM-1 Expression auf den Endothelzellen der Lunge gefunden während Änderungen in der VEGF Expression nicht detektiert wurden. Der immunologische Hintergrund, der diesen therapeutischen Effekt hervorrief, konnte durch die T-Zellaktivierung durch die kürzlich neu beschriebene DC Population, welche Interferon-produzierende Killer Dendritische Zellen genannt werden (IK-DC), die zusätzlich von aktivierten und maturierten klassischen DCs unterstützt wurden, erklärt werden. IK-DCs von EBI-3 defizienten Mäusen produzierten höhere Mengen an IFN-g während die klassischen DCs MHC und co-stimulatorische Moleküle exprimierten, welche die Sekretion von IL-12 initiierten. Das Zusammenspiel der genannten Faktoren induzierte eine verstärkte CD4 und CD8 T-Zellantwort in den Lungen dieser Mäuse. Dies wiederum resultierte im TNF- und TRAIL abhängigen programmierten Zelltod der B16-F10 Melanomzellen in den Lungen der EBI-3 defizienten Mäuse, wohingegen sowohl weitere anti-apoptotische Mechanismen als auch T regulatorische Zellen keinen Einfluss auf die in den EBI-3 defizienten Mäusen beobachtete Tumorabwehr zu spielen scheint. Schlussendlich konnten EBI-3 defiziente CD8+ T-Zellen, welche zuvor mit Tumorantigen geprimed wurden, adoptiv in B6 Wildtypmäuse transferiert werden, was zeigte, dass diese Zellen in der Lage sind, die Tumormasse in den Empfängermäusen signifikant zu verringern. Zusammengefasst, demonstrieren diese Daten, dass das Blockieren von EBI-3 im metastasierenden Melanom ein vielversprechender Angriffspunkt in der Tumortherapie darstellt.