1000 resultados para Halbach structure
Resumo:
Geometric constraints present in A2BO4 compounds with the tetragonal-T structure of K2NiF4 impose a strong pressure on the B---OII---B bonds and a stretching of the A---OI---A bonds in the basal planes if the tolerance factor is t congruent with RAO/√2 RBO < 1, where RAO and RBO are the sums of the A---O and B---O ionic radii. The tetragonal-T phase of La2NiO4 becomes monoclinic for Pr2NiO4, orthorhombic for La2CuO4, and tetragonal-T′ for Pr2CuO4. The atomic displacements in these distorted phases are discussed and rationalized in terms of the chemistry of the various compounds. The strong pressure on the B---OII---B bonds produces itinerant σ*x2−y2 bands and a relative stabilization of localized dz2 orbitals. Magnetic susceptibility and transport data reveal an intersection of the Fermi energy with the d2z2 levels for half the copper ions in La2CuO4; this intersection is responsible for an intrinsic localized moment associated with a configuration fluctuation; below 200 K the localized moment smoothly vanishes with decreasing temperature as the d2z2 level becomes filled. In La2NiO4, the localized moments for half-filled dz2 orbitals induce strong correlations among the σ*x2−y2 electrons above Td reverse similar, equals 200 K; at lower temperatures the σ*x2−y2 electrons appear to contribute nothing to the magnetic susceptibility, which obeys a Curie-Weiss law giving a μeff corresponding to S = 1/2, but shows no magnetic order to lowest temperatures. These surprising results are verified by comparison with the mixed systems La2Ni1−xCuxO4 and La2−2xSr2xNi1−xTixO4. The onset of a charge-density wave below 200 K is proposed for both La2CuO4 and La2NiO4, but the atomic displacements would be short-range cooperative in mixed systems. The semiconductor-metallic transitions observed in several systems are found in many cases to obey the relation Ea reverse similar, equals kTmin, where varrho = varrho0exp(−Ea/kT) and Tmin is the temperature of minimum resistivity varrho. This relation is interpreted in terms of a diffusive charge-carrier mobility with Ea reverse similar, equals ΔHm reverse similar, equals kT at T = Tmin.
Resumo:
C14Ht0F3NO2, P2.Jc, a = 12.523 (4), b = 7.868(6), c = 12.874 (3)A, fl = 95.2 (2) ° , O,,, = 1.47 (4), D e = 1.47 Mg m -3, Z = 4. Final R = 0.074 for 2255 observed reflections. The carboxyl group and the phenyl ring bearing the carboxyl group are nearly coplanar whereas the two phenyl rings are inclined with respect to each other at 52.8 ° . The difference between the two polymorphs of flufenamic acid lies in the geometrical disposition of the [3-(trifluoromethyl)- phenyl]amino moiety with respect to the benzoic acid moiety. As in other fenamate structures, the carboxyl group and the imino N atom are connected through an intramolecular hydrogen bond; also, pairs of centrosymmetrically related molecules are connected through hydrogen bonds involving carboxyl groups.
Resumo:
Distributed renewable energy has become a significant contender in the supply of power in the distribution network in Queensland and throughout the world. As the cost of battery storage falls, distribution utilities turn their attention to the impacts of battery storage and other storage technologies on the low voltage (LV) network. With access to detailed residential energy usage data, Energex's available residential tariffs are investigated for their effectiveness in providing customers with financial incentives to move to Time-of Use based tariffs and to reward use of battery storage.
Resumo:
The Australian lungfish is a unique living representative of an ancient dipnoan lineage, listed as ‘vulnerable’ to extinction under Australia’s
Resumo:
Invasive grasses are among the worst threats to native biodiversity, but the mechanisms causing negative effects are poorly understood. To investigate the impact of an invasive grass on reptiles, we compared the reptile assemblages that used native kangaroo grass (Themeda triandra), and black spear grass (Heteropogon contortus), to those using habitats invaded by grader grass (Themeda quadrivalvis). There were significantly more reptile species, in greater abundances, in native kangaroo and black spear grass than in invasive grader grass. To understand the sources of negative responses of reptile assemblages to the weed, we compared habitat characteristics, temperatures within grass clumps, food availability and predator abundance among these three grass habitats. Environmental temperatures in grass, invertebrate food availability, and avian predator abundances did not differ among the habitats, and there were fewer reptiles that fed on other reptiles in the invaded than in the native grass sites. Thus, native grass sites did not provide better available thermal environments within the grass, food, or opportunities for predator avoidance. We suggest that habitat structure was the critical factor driving weed avoidance by reptiles in this system, and recommend that the maintenance of heterogeneous habitat structure, including clumping native grasses, with interspersed bare ground, and leaf litter are critical to reptile biodiversity.
Resumo:
The fleshy shrimp, Fenneropenaeus chinensis, is the family of Penaeidae and one of the most economically important marine culture species in Korea. However, its genetic characteristics have never been studied. In this study, a total of 240 wild F. chinensis individuals were collected from four locations as follows: Narodo (NRD, n = 60), Beopseongpo (BSP, n = 60), Chaesukpo (CSP, n = 60), and Cheonsuman (CSM, n = 60). Genetic variability and the relationships among four wild F. chinensis populations were analyzed using 13 newly developed microsatellite loci. Relatively high levels of genetic variability (mean allelic richness = 16.87; mean heterozygosity = 0.845) were found among localities. Among the 52 population loci, 13 showed significant deviation from the Hardy–Weinberg equilibrium. Neighbor-joining, principal coordinate, and molecular variance analyses revealed the presence of three subpopulations (NRD, CSM, BSP and CSP), which was consistent with clustering based on genetic distance. The mean observed heterozygosity values of the NRD, CSM, BSP, and CSP populations were 0.724, 0.821, 0.814, and 0.785 over all loci, respectively. These genetic variability and differentiation results of the four wild populations can be applied for future genetic improvement using selective breeding and to design suitable management guidelines for Korean F. chinensis culture.
Resumo:
CI1H19N4OIIP2.Na+.TH2 O, Mr = 594.08, is orthorhombic, space group P21212 l, with a = 6.946 (2), b = 12.503 (4), c = 28.264 (8)/k, U = 2454.6 A, a, D x = 1.61 Mg m -a, Z = 4, ~t(CuKa) = 2.612 mm -1, F(000) = 1244. Final R = 0.101 for 1454 observed reflections. The cytosine base is in the anti conformation with respect to the sugar (ZCN = 62"60) . The ribose exhibits an uncommon C(l')exo-C(2')endo puckering. The pyrophosphate has a characteristic staggered geometry. The conformation about P(2)-O(7') is trans (-103.4°). This makes CDPethanolamine more extended compared to the folded geometry of CDP-choline, which has a gauche conformation (71.3 o). The molecular interactions in the extended crystal structure, however, are similar to those found in CDP-choline, with the CMP-5' portions tightly bound by metal ligation and the phosphorylethanolamine parts only loosely held by water molecules.
Resumo:
Meclofenamic acid, C I4HIICI2NO2, probably the most potent among analgesic fenamates, crystallizes in the triclinic space group P1, with a = 8.569 (5), b = 8.954(8), c -- 9.371 (4) A, ct = 103.0 (2), fl -- 103.5 (2), y = 92.4 (2) ° , Z = 2, D m = 1.43 (4), D c = 1.41 Mg m -3. The structure was solved by direct methods and refined to R = 0.135 for 1062 observed reflections. The anthranilic acid moiety in the molecule is nearly planar and is nearly perpendicular to the 2,6-dichloro-3-methylphenyl group. The molecules, which exist as hydrogen-bonded dimers, have an internal hydrogen bond involving the imino and the carboxyl groups. The methyl group is disordered and occupies two positions with unequal occupancies. The disorder can be satisfactorily explained in terms of the rotational isomerism of the 2,6-dichloro-3-methylphenyl group about the bond which connects it to the anthranilic acid moiety and the observed occupancies on the basis of packing considerations.
Resumo:
We apply our technique of using a Rb-stabilized ring-cavity resonator to measure the frequencies of various spectral components in the 555.8-nm 1S0-->3P1 line of Yb. We determine the isotope shifts with 60 kHz precision, which is an order-of-magnitude improvement over the best previous measurement on this line. There are two overlapping transitions, 171Yb(1/2-->3/2) and 173Yb(5/2-->3/2), which we resolve by applying a magnetic field. We thus obtain the hyperfine constants in the 3P1 state of the odd isotopes with a significantly improved precision. Knowledge of isotope shifts and hyperfine structure should prove useful for high-precision calculations in Yb necessary to interpret ongoing experiments testing parity and time-reversal symmetry violation in the laws of physics.
Resumo:
CDH406P-.Na +.H20 , M r = 208.0, is monoclinic, Cc, a = 11.423 (2), b = 23.253 (5), c - 6.604 (1) A, fl = 123.63 (1) °, U = 1460.6 A 3, D x =. 1.89 Mg m -a, Z = 8, 2(Mo Ka) = 0.7107 A, p(Mo Ka) = 0.44 mm -~, F(000) = 840. Final R = 0.063 for 1697 reflections.The two crystallographically independent molecules of phosphoenolpyruvate (PEP) (A and B) are almost mirror images of each other, the mirror being the planar enolpyruvate group. The torsion angle C(3)-C(2)- O(1)-P(1) is 122.6 in A and -112.0 ° in B, in contrast to -209.1 ° in PEP.K. The enolic C(2)-O(1) has a partial double-bond character [1.401 (A), 1.386A (B)]. The high-energy P~O bond (1.595 and 1.610A) is comparable to that in PEP.K (1.612 A). Na(1) has six nearest neighbours while Na(2) has only five. The Na + ions are involved in binding only the phosphates of different molecules, in contrast to the K ÷ ion in PEP. K, which binds to both the phosphate and carboxyl ends of the same molecule. The planar carboxyl groups stack on each other at an average distance of 3.2 A instead of forming hydrogen-bonded dimers usually found in carboxylate structures.
Resumo:
L-Lysine d-pantothenate, a 1:1 amino acid-vitamin complex, crystallizes in the monoclinic space group P21 with Image Full-size image (1K) .The structure has been solved by direct methods and refined to an R value of 0.053 for 1868 observed reflections. The zwitterionic positively charged lysine molecules in the structure assume the sterically most favourable conformation with an all-trans side chain trans to the α-carboxylate group. The pantothenate anion has a somewhat folded conformation stabilised by an intramolecular bifurcated hydrogen bond. The unlike molecules aggregate into separate alternating layers. The molecules in the lysine layers form a head-to-tail sequence parallel to the a-axis. The interactions which hold the adjacent layers together include those between the side chain amino group of lysine and the carboxylate group in the pantothenate anion. The geometry of these interactions is such that each carboxylate group is sandwiched between two amino groups in a periodic arrangement of alternating carboxylate and amino groups.
Resumo:
In view of the vast potential of micellar systems as media in which reactions may be conducted, a clear understanding of the structure of micelles is essential. The unique features of micelles and how these have been utilized to catalyse and control photochemical reactivity are briefly surveyed here. Micellar media, when used for chemical reactions, exhibit features that are completely different from those of ordinary non-aqueous solvents. A thermal or photochemical reaction conducted in micellar media is influenced by the effects of the micellar environment which result in control and/or modification of reactivity. The salient features of micelles that influence the photochemical reactivity are cage and microviscosity effects, localization and compartmentalization effects, pre-orientational, polarity and counterion effects.
Resumo:
Unambiguous synthesis of 2-methyl-3-isopropenylanisole (Image ) and 2-isopropenyl-3-methylanisole (Image ) has led to revision, from (Image ) to (Image ), of the structure assigned to a monoterpene phenol ether isolated from
Resumo:
The synthesis of 4,4,N,N-tetramethyl-NN-dinitroso-2,2-methylenedianiline (1) by the route p-MeC6H4NH2+ HCHO + OH–(p-MeC6H4NMe)2CH2(7b); (7b)+ acid at 70 °C 4,N-dimethyl-6-(N-methyl-p-toluidinomethyl)aniline (4b); (4b)+ acid at 130 °C 4,4,NN-tetramethyl-2,2-methylenedianiline (3b); (3b)+ HNO2(1), is described. Aspects of the 1H n.m.r. spectra of the above and related compounds are discussed. A crystal-structure analysis of compound (1) shows one of the N-nitroso-groups to be disordered with the endo-form being in preponderance (4 : 1) over the exo-form. The other N-nitroso-group is exclusively exo in the solid state. There is little or no resonance between the benzene ring and the nitroso-group attached to the ring, the two groups being almost perpendicular to each other. In one of the N-nitroso-groups, the nitrogen atom deviates significantly from the plane of the benzene ring to which it is attached. Both amide nitrogen atoms show some pyramidal character.
Resumo:
NICOTINAMIDE adenine dinucleotide (NAD) has a fundamental role in metabolic processes as an electron transport molecule. Although its chemical structure was elucidated1 in 1934, its detailed conformation remains still to be established in spite of numerous physicochemical applications2. NAD analogues with a variety of substitutions on the bases are known to retain considerable activity of the natural coenzyme as long as the pyrophosphate diester group has been retained3,4. The geometry of this backbone moiety is therefore indispensable to our understanding of the conformation and function of the coenzyme. We have so far no experimental evidence on this in NAD or any other nucleotide coenzyme molecule. X-ray studies have been possible only on those analogues5,6 where the nicotinamide and adenine rings are linked by a trimethylene bridge. The results are conflicting and it is difficult to use them to provide a structural basis for the NAD molecule itself, particularly as the phosphate backbone is absent from these analogues.