971 resultados para HYDROXYLAMINE ACCUMULATION
Resumo:
Most of the Pb isotope data for the Leg 92 metalliferous sediments (carbonate-free fraction) form approximately linear arrays in the conventional isotopic plots, extending from the middle of the field for mid-ocean ridge basalts (MORB) toward the field for Mn nodules. These arrays are directed closely to the average values of Mn nodules, the composition of which reflects the Pb isotope composition of seawater (Reynolds and Dasch, 1971). Since the Leg 92 samples are almost devoid of continentally derived detritus, it can be inferred that the more radiogenic end-member is seawater. The less radiogenic end-member lies in the very middle of the MORB field, and hence can be considered to reflect the Pb isotope composition of typical ocean-ridge basalt. The array of data lying between these two end-members is most readily interpreted in terms of simple linear mixing of Pb from the two different end-member sources. According to this model, eight samples from Sites 599 to 601 contain 50 to 100% basaltic Pb. Five of these samples have compositions that are identical within the uncertainty of the analyses. We use the average of these five values to define our unradiogenic end-member in the linear mixing model. The ratios used for this average are 206Pb/204Pb = 18.425 ± 0.010; 207Pb/204Pb = 15.495 ± 0.018; 208Pb/204Pb = 37.879 ± 0.068. These values should approximate the average Pb isotope composition of discharging hydrothermal solutions, and therefore also that of the basaltic crust, over the period of time represented by these samples ( 4 m.y., from 4 to 8 Ma). Sr isotope ratios show a significant range of values, from 0.7082 to 0.7091. The lower ratios are well outside the value of 0.70910 ± 6 for modern-day seawater (Burke et al., 1982). However, most values correspond very closely to the curve of 87Sr/86Sr versus age for seawater, with older samples having progressively lower 87Sr/86Sr ratios. The simplest explanation for this progressive reduction is that recrystallization of the abundant biogenic carbonate in the sediments released older seawater Sr which was incorporated into ferromanganiferous phases during diagenesis. Leg 92 metalliferous sediments have total rare earth element (REE) contents that range on a carbonate-free basis from 131 to 301 ppm, with a clustering between 167 and 222 ppm. The patterns have strong negative Ce anomalies. Samples from Sites 599 to 601 display a slight but distinct enrichment in the heavy REE relative to the light REE, whereas those from Sites 597 to 598 show almost no heavy REE enrichment. The former patterns (those for Sites 599 to 601) are interpreted as indicating moderate diagenetic alteration of metalliferous sediments originating at the EPR axis; the latter reflect more complete diagenetic modification.
Resumo:
During the middle Miocene, Earth's climate transitioned from a relatively warm phase (Miocene climatic optimum) into a colder mode with re-establishment of permanent ice sheets on Antarctica, thus marking a fundamental step in Cenozoic cooling. Carbon sequestration and atmospheric CO2 drawdown through increased terrestrial and/or marine productivity have been proposed as the main drivers of this fundamental transition. We integrate high-resolution (1-3 k.y.) benthic stable isotope data with XRF-scanner derived biogenic silica and carbonate accumulation estimates in an exceptionally well-preserved sedimentary archive, recovered at Integrated Ocean Drilling Program Site U1338, to reconstruct eastern equatorial Pacific productivity variations and to investigate temporal linkages between high- and low-latitude climate change over the interval 16-13 Ma. Our records show that the climatic optimum (16.8-14.7 Ma) was characterized by high amplitude climate variations, marked by intense perturbations of the carbon cycle. Episodes of peak warmth at (southern hemisphere) insolation maxima coincided with transient shoaling of the carbonate compensation depth and enhanced carbonate dissolution in the deep ocean. A switch to obliquity-paced climate variability after 14.7 Ma concurred with a general improvement in carbonate preservation and the onset of stepwise global cooling, culminating with extensive ice growth over Antarctica at ~13.8 Ma. We find that two massive increases in opal accumulation at ~14.0 and ~13.8 Ma occurred just before and during the final and most prominent cooling step, supporting the hypothesis that enhanced siliceous productivity in the eastern equatorial Pacific contributed to CO2 drawdown.
Resumo:
Carbonate oozes recovered by hydraulic piston coring at DSDP Site 586 on Ontong-Java Plateau and Site 591 on Lord Howe Rise have carbonate contents that are consistently higher than 90% with only minor variations. Consequently, paleoceanographic signals were not recorded in detail in the carbonate contents. However, mass accumulation rates of carbonate increased in the late Miocene to mid-Pliocene, reflecting an increase in productivity, then abruptly decreased from mid-Pliocene to the present. Variations in relative abundances of coarse material (foraminifers) and fine material (mostly calcareous nannofossils) do reflect histories of current winnowing and biogenic productivity at the two sites. The late Miocene from 10.5 to 6.5 m.y. ago was a time of relatively constant, quiet, pelagic sedimentation with typical southwest Pacific sedimentation rates of 20-25 m/m.y. The average coarse-fraction abundances are always higher at Site 586 than at Site 591, which reflects winnowing at Site 586. These conditions were interrupted between 6.5 to 4.0 m.y. ago when increased upwelling at the Subtropical Divergence and the Equatorial Divergence produced greater productivity of calcareous planktonic organisms. The increased productivity is suggested by large increases in both fineand coarse-fraction material and constant ratios of foraminifers to nannofossils. The maximum of productivity was about 4.0 m.y. ago. This period of increased upwelling is coincident with the inferred development of the West Antarctic ice sheet. The high productivity was followed by an abrupt increase in winnowing about 2.5 m.y. ago at Site 591, but not until about 2.0 m.y. ago at Site 586. By 2.0 m.y. ago in the late Pliocene, quiet, pelagic sedimentation conditions prevailed, similar to those of the late Miocene. The last 0.7 m.y. has been a period of relatively intense winnowing on Lord Howe Rise but not on Ontong-Java Plateau. The coarse-fraction data have both long- and short-period fluctuations. Long-period fluctuations at Site 591 average about 850 *10**3 yr./cycle and those at Site 586 average 430*10**3 yr./cycle. The highest amplitudes are found in the Pliocene and Quaternary sections. The short-period fluctuations range from 100 to 48*10**3 yr./cycle at Site 586 and from 250 to 33 *10**3 yr./cycle at Site 591. The effects of local fluctuations of productivity and winnowing have modified the primary orbital forcing signals at these two sites to yield complex paleoceanographic records.