980 resultados para Guiding planes
Resumo:
A new model proposed for the gasification of chars and carbons incorporates features of the turbostratic nanoscale structure that exists in such materials. The model also considers the effect of initial surface chemistry and different reactivities perpendicular to the edges and to the faces of the underlying crystallite planes comprising the turbostratic structure. It may be more realistic than earlier models based on pore or grain structure idealizations when the carbon contains large amounts of crystallite matter. Shrinkage of the carbon particles in the chemically controlled regime is also possible due to the random complete gasification of crystallitic planes. This mechanism can explain observations in the literature of particle size reduction. Based on the model predictions, both initial surface chemistry and the number of stacked planes in the crystallites strongly influence the reactivity and particle shrinkage. Its test results agree well with literature data on the air-oxidation of Spherocarb and show that it accurately predicts the variation of particle size with conversion. Model parameters are determined entirely from rate measurements.
Resumo:
There are, at least, two major questions concerning the molecular development of the olfactory nerve pathway. First, what are the molecular cues responsible for guiding axons from the nasal cavity to the olfactory bulb? Second, what is the molecular basis of axon targeting to specific glomeruli once axons reach the olfactory bulb? Studies in the primary olfactory pathway have focused on the role of the extracellular matrix and ensheathing cells in establishing an initial substrate for growth of pioneer axons between the periphery and brain. The primary axons also express a multitude of cell adhesion molecules that regulate fasciculation of axons and hence may play a role in fascicle formation in the olfactory nerve. Although the olfactory neuroepithelium principally consists of a morphologically homogeneous class of primary olfactory neurons, there are numerous subpopulations of olfactory neurons expressing chemically distinct phenotypes. In particular, numerous subpopulations have been characterized by expression of unique carbohydrate residues and olfactory receptor proteins. Some of these molecules have recently been implicated in axon guidance and targeting to specific glomeruli.
Resumo:
We describe the classical and quantum two-dimensional nonlinear dynamics of large blue-detuned evanescent-wave guiding cold atoms in hollow fiber. We show that chaotic dynamics exists for classic dynamics, when the intensity of the beam is periodically modulated. The two-dimensional distributions of atoms in (x,y) plane are simulated. We show that the atoms will accumulate on several annular regions when the system enters a regime of global chaos. Our simulation shows that, when the atomic flux is very small, a similar distribution will be obtained if we detect the atomic distribution once each the modulation period and integrate the signals. For quantum dynamics, quantum collapses, and revivals appear. For periodically modulated optical potential, the variance of atomic position will be suppressed compared to the no modulation case. The atomic angular momentum will influence the evolution of wave function in two-dimensional quantum system of hollow fiber.
Resumo:
We use the finite element method to model three-dimensional convective pore-fluid flow in fluid-saturated porous media when they are heated from below. In particular, we employ the particle-tracking technique to mimic the trajectories of particles in three-dimensional fluid flow problems. The related numerical results demonstrated that: (1) The progressive asymptotic approach procedure, which was previously developed for the finite element modelling of two-dimensional convective pore-fluid flow problems, is equally applicable to the finite element modelling of three-dimensional convective pore-fluid flow in fluid-saturated porous media heated from below. (2) The perturbation of gravity at different planes has a significant effect on the pattern of three-dimensional convective pore-fluid flow and therefore, may influence the pattern of orebody formation and mineralization in three-dimensional hydrothermal systems. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
The paper presents a theory for modeling flow in anisotropic, viscous rock. This theory has originally been developed for the simulation of large deformation processes including the folding and kinking of multi-layered visco-elastic rock (Muhlhaus et al. [1,2]). The orientation of slip planes in the context of crystallographic slip is determined by the normal vector - the director - of these surfaces. The model is applied to simulate anisotropic mantle convection. We compare the evolution of flow patterns, Nusselt number and director orientations for isotropic and anisotropic rheologies. In the simulations we utilize two different finite element methodologies: The Lagrangian Integration Point Method Moresi et al [8] and an Eulerian formulation, which we implemented into the finite element based pde solver Fastflo (www.cmis.csiro.au/Fastflo/). The reason for utilizing two different finite element codes was firstly to study the influence of an anisotropic power law rheology which currently is not implemented into the Lagrangian Integration point scheme [8] and secondly to study the numerical performance of Eulerian (Fastflo)- and Lagrangian integration schemes [8]. It turned out that whereas in the Lagrangian method the Nusselt number vs time plot reached only a quasi steady state where the Nusselt number oscillates around a steady state value the Eulerian scheme reaches exact steady states and produces a high degree of alignment (director orientation locally orthogonal to velocity vector almost everywhere in the computational domain). In the simulations emergent anisotropy was strongest in terms of modulus contrast in the up and down-welling plumes. Mechanisms for anisotropic material behavior in the mantle dynamics context are discussed by Christensen [3]. The dominant mineral phases in the mantle generally do not exhibit strong elastic anisotropy but they still may be oriented by the convective flow. Thus viscous anisotropy (the main focus of this paper) may or may not correlate with elastic or seismic anisotropy.
Resumo:
In this article we revisit a famous chapter of Brazilian history, yet to be properly analysed from an ethnological perspective: the `Tamoio confederation,` a coalition of 16th century coastal Tupian groups who threatened to undermine Portuguese colonization during the dispute between the French and Portuguese for the Guanabara region (now Rio de Janeiro). Was this `confederation` a new phenomenon in Tupian politics, engendered by the Conquest and inducing a shift towards political centralization? Or was it, on the contrary, the actualization of a possibility already (always) present in Tupian forms of political organization and action? These are the questions guiding our inquiry, which we seek to answer through the use of both historical sources and the in-depth ethnological knowledge of Tupi-Guarani peoples developed by various authors over recent decades.
Resumo:
This paper suggests a comprehensive policy agenda and first steps to be undertaken by the International Society of Physical and Rehabilitation Medicine (ISPRM) in order to realize its humanitarian, professional and scientific mandates. The general aims of ISPRM, as formulated in its guiding documents, the relations with the World Health Organization (WHO) and the United Nations system, and demands of ISPRM`s constituency herein form the basis of this policy agenda Agenda items encompass contributions to the establishment of rehabilitation services worldwide and the development of PRM societies ISPRM`s possible input in general curricula in disability and rehabilitation, and in fighting discrimination against people experiencing disability are discuss. Moreover, the implementation of the International Classification of Functioning. Disability and Health (ICF) in medicine, contributions to WHO guidelines relevant to disability and rehabilitation the provision of a conceptual description of the rehabilitation strategy and the outline of a rehabilitation services matrix are seen as important agenda items of ISPRM`s external policy. With regard to its constituency and internal policy, a definition of the field of competence and a conceptual description of PRM, as well as the development of a consistent and comprehensive congress topic list and congress structure appear to be crucial items. The proposed agenda items serve as a basis for future discussions.
The selection of intended actions and the observation of others' actions: A time-resolved fMRI study
Resumo:
Whenever we plan, imagine, or observe an action, the motor systems that would be involved in preparing and executing that action are similarly engaged. The way in which such common motor activation is formed, however, is likely to differ depending on whether it arises from our own intentional selection of action or from the observation of another's action. In this study, we use time-resolved event-related functional MRI to tease apart neural processes specifically related to the processing of observed actions, the selection of our own intended actions, the preparation for movement, and motor response execution. Participants observed a finger gesture movement or a cue indicating they should select their own finger gesture to perform, followed by a 5-s delay period; participants then performed the observed or self-selected action. During the preparation and readiness for action, prior to initiation, we found activation in a common network of higher motor areas, including dorsal and ventral premotor areas and the pre-supplementary motor area (pre-SMA); the more caudal SMA showed greater activation during movement execution. Importantly, the route to this common motor activation differed depending on whether participants freely selected the actions to perform or whether they observed the actions performed by another person. Observation of action specifically involved activation of inferior and superior parietal regions, reflecting involvement of the dorsal visual pathway in visuomotor processing required for planning the action. In contrast, the selection of action specifically involved the dorsal lateral prefrontal and anterior cingulate cortex, reflecting the role of these prefrontal areas in attentional selection and guiding the selection of responses. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
OBJECTIVE. MRI and combined ankle and posterior subtalar MR arthrography in cadavers were used to evaluate the ligaments of the posterior and lateral talar processes. Subsequent anatomic and histologic correlation was performed. MATERIALS AND METHODS. Ten cadaveric ankles were used. Routine radiography and MRI were initially performed. Ankle and posterior subtalar MR arthrography, followed by anatomic and histologic analysis, was then performed to allow better assessment of the ligaments of the lateral and posterior talar process. RESULTS. In all subjects, MR arthrography provided superior delineation of the articular and periarticular structures, as well as the ligaments. The lateral talocalcaneal and medial talocalcaneal ligaments were best seen in the axial and coronal planes, respectively. The axial plane was best for visualizing the fibulotalocalcaneal ligament, and the sagittal plane was best for evaluating the posterior talocalcaneal ligament. The anterior and posterior talofibular ligaments and the posterior tibiotalar ligament (superficial and deep portions) were best seen in the axial plane. Histologic analysis was correlated to anatomic sectioning and showed the attachment sites of these ligaments. CONCLUSION. Combined ankle and posterior subtalar MR arthrography enhances visualization of the ligaments attaching to the posterior and lateral talar processes, including the posterior, lateral, and medial talocalcaneal and fibulotalocalcaneal ligaments.
Resumo:
Purpose The purpose of this report was to demonstrate the normal complex insertional anatomy of the tibialis posterior tendon (TPT) in cadavers using magnetic resonance (MR) imaging with anatomic and histologic correlation. Material and methods Ten cadaveric ankles were used according to institutional guidelines. MR T1-weighted spin echo imaging was performed to demonstrate aspects of the complex anatomic distal insertions of the TPT in cadaveric specimens. Findings on MR imaging were correlated with those derived from anatomic and histologic study. Reults Generally, the TPT revealed a low signal in all MR images, except near the level of the medial malleolus, where the TPT suddenly changed direction and ""magic angle"" artifact could be observed. In five out of ten specimens (50%), a type I accessory navicular bone was found in the TPT. In all cases with a type I accessory navicular bone, the TPT had an altered signal in this area. Axial and coronal planes on MR imaging were the best in identifying the distal insertions of the TPT. A normal division of the TPT was observed just proximal to the insertion into the navicular bone in five specimens (100%) occurring at a maximum proximal distance from its attachment to the navicular bone of approximately 1.5 to 2 cm. In the other five specimens, in which a type I accessory navicular bone was present, the TPT directly inserted into the accessory bone and a slip less than 1.5 mm in thickness could be observed attaching to the medial aspect of the navicular bone (100%). Anatomic inspection confirmed the sites of the distal insertions of the components of the TPT. Conclusion MR imaging enabled detailed analysis of the complex distal insertions of the TPT as well as a better understanding of those features of its insertion that can simulate a lesion.
Resumo:
Objectives We evaluated demographic, clinical, and angiographic factors influencing the selection of coronary artery bypass graft (CABG) surgery versus percutaneous coronary intervention (PCI) in diabetic patients with multivessel coronary artery disease (CAD) in the BARI 2D (Bypass Angioplasty Revascularization Investigation in Type 2 Diabetes) trial. Background Factors guiding selection of mode of revascularization for patients with diabetes mellitus and multivessel CAD are not clearly defined. Methods In the BARI 2D trial, the selected revascularization strategy, CABG or PCI, was based on physician discretion, declared independent of randomization to either immediate or deferred revascularization if clinically warranted. We analyzed factors favoring selection of CABG versus PCI in 1,593 diabetic patients with multivessel CAD enrolled between 2001 and 2005. Results Selection of CABG over PCI was declared in 44% of patients and was driven by angiographic factors including triple vessel disease (odds ratio [OR]: 4.43), left anterior descending stenosis >= 70% (OR: 2.86), proximal left anterior descending stenosis >= 50% (OR: 1.78), total occlusion (OR: 2.35), and multiple class C lesions (OR: 2.06) (all p < 0.005). Nonangiographic predictors of CABG included age >= 65 years (OR: 1.43, p = 0.011) and non-U.S. region (OR: 2.89, p = 0.017). Absence of prior PCI (OR: 0.45, p < 0.001) and the availability of drug-eluting stents conferred a lower probability of choosing CABG (OR: 0.60, p = 0.003). Conclusions The majority of diabetic patients with multivessel disease were selected for PCI rather than CABG. Preference for CABG over PCI was largely based on angiographic features related to the extent, location, and nature of CAD, as well as geographic, demographic, and clinical factors. (Bypass Angioplasty Revascularization Investigation in Type 2 Diabetes [BARI 2D]; NCT00006305) (J Am Coll Cardiol Intv 2009;2:384-92) (C) 2009 by the American College of Cardiology Foundation
Resumo:
Objective To investigate whether standardization of the multiplanar view (SMV) when evaluating the uterus using three-dimensional ultrasonography (3D-US) improves intra-and interobserver reliability and agreement with regard to endometrial measurement. Methods Two-dimensional (2D) and 3D-US was used to measure endometrial thickness by two observers in 30 women undergoing assisted reproduction treatment. Endometrial volume was measured with Virtual Organ Computer-aided AnaLysis (VOCAL (TM)) in the longitudinal (A) and coronal (C) planes using an unmodified multiplanar view (UMV) and a standardized multiplanar view (SMV). Measurement reliability was evaluated by intraclass correlation coefficient (ICC) and agreement was examined using Bland-Altman plots with limits of agreement (LoA). The ease of outlining the endometrial-myometrial interface was compared between the A-and C-planes using subjective assessment. Results Endometrial volume measurements using the SMV and A-plane were more reliable (intra-and interobserver ICCs, 0.979 and 0.975, respectively) than were measurements of endometrial thickness using 2D-US (intra-and interobserver ICCs, 0.742 and 0.702, respectively) or 3D-US (intra-and interobserver ICCs, 0.890 and 0.784, respectively). The LoAs were narrower for SMV than for UMV. Reliability and agreement were not much different between the A- and C-planes. However the observers agreed that delineating the endometrial-myometrial interface using the A-plane was easier (first and second observer, 50.0 and 46.7%, respectively) or `comparable` (50 and 53.3%, respectively), but never more difficult than using the C-plane. Conclusions Endometrial volume measurements are more reliable than endometrial thickness measurements and are best performed using SMV and the A-plane. Copyright (C) 2011 ISUOG. Published by John Wiley & Sons, Ltd.
Resumo:
Objective: The aims of this study were to assess the feasibility of performing a complete fetal echocardiographic study during the first trimester of pregnancy, to establish the best week to accomplish a complete evaluation, and to find a relationship between the diameters of the cardiac valves and gestational age. Methods: 46 fetuses with normal nuchal translucency and venous duct Doppler velocimetry were submitted to echocardiographic studies by the transvaginal approach between the 11 + 0 and 14 + 6 weeks of gestation. A complete echocardiographic evaluation was defined as an examination in which the three basic planes, four-chamber, longitudinal and short-axis views, were obtained. Results: The rates of complete echocardiography evaluation were 37, 85 and 100% at 11, 12 and 13-14 weeks, respectively. The longitudinal view was the easiest to obtain and the short-axis view was the most difficult one. The diameter of the cardiac valves was compared with the crown-rump length (CRL) and there was no statistically significant difference between either the diameters of the mitral and tricuspid or the aortic and pulmonary valves. A linear growth curve was constructed to demonstrate the diameter correlations. Conclusions: The study demonstrated the feasibility of a complete fetal echocardiographic evaluation by the transvaginal approach during the first trimester of gestation. The rate of a complete evaluation increased along the period and reached 100% when the CRL was 64 mm or 13 weeks of gestational age. There was a linear correlation between the cardiac valve diameters and the CRL revealing a relationship between the cardiac and fetal development. The absence of a statistically significant difference between the left and right valve dimensions possibly means that there is no predominance of right or left chambers during this period of evaluation. Copyright (C) 2007 S. Karger AG, Basel.
Resumo:
Objective To evaluate if two different measures of synovial activation, baseline Hoffa synovitis and effusion synovitis, assessed by MRI, predict cartilage loss in the tibiofemoral joint at 30 months follow-up in subjects with neither cartilage damage nor tibiofemoral radiographic osteoarthritis of the knee. Methods Non-contrast-enhanced MRI was performed using proton density-weighted fat-suppressed sequences in the axial and sagittal planes and a short tau inversion recovery sequence in the coronal plane. Hoffa synovitis, effusion synovitis and cartilage status were assessed semiquantitatively according to the WORMS scoring system. Included were knees that had neither radiographic osteoarthritis nor MRI-detected tibiofemoral cartilage damage at the baseline visit. The presence of Hoffa synovitis was defined as any grade = 2 (range 0-3) and effusion synovitis as any grade = 2 (range 0-3). Logistic regression was performed to examine the relation of the presence of either measure to the risk of cartilage loss at 30 months adjusting for other potential confounders. Results Of 514 knees included in the analysis, the prevalence of Hoffa synovitis and effusion synovitis at the baseline visit was 8.4% and 10.3%, respectively. In the multivariable analysis, baseline effusion synovitis was associated with an increased risk of cartilage loss. No such association was observed for baseline Hoffa synovitis. Conclusions Baseline effusion synovitis, but not Hoffa synovitis, predicted cartilage loss. The findings suggest that effusion synovitis, a reflection of inflammatory activity including joint effusion and synovitic thickening, may play a role in the future development of cartilage lesions in knees without osteoarthritis.
Resumo:
Osteoarthritis (OA) is a widely prevalent disease of the whole joint including cartilage, bone and soft tissues. Increasing importance of imaging including assessment of all joint structures has been recognized recently. Conventional radiography is still the first and most commonly used imaging technique for evaluation of a patient with a known or suspected diagnosis of OA. However, limitations have been revealed by recent MRI-based knee OA studies. MRI plays a crucial role in understanding the natural history of the disease and in guiding future therapies due to its ability to image the knee as a whole organ and to directly and three-dimensionally assess cartilage morphology and composition. It is crucial to use the appropriate MR pulse sequences to assess various OA features, and thus support from experienced musculoskeletal radiologists should be sought for study design, image acquisition and interpretation. The aim of this article is to describe the roles and limitations of conventional radiography and MRI in imaging of OA, and also to give insight into the use of other modalities such as ultrasound, scintigraphy, computed tomography (CT) and CT arthrography in clinical practice and research in OA, particularly focusing on the assessment of knee OA in the tibiofemoral joint.