974 resultados para Gravitational segregation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The carbohydrate based mesogens have gained an importance in the field of liquid crystals, primarily through the amphiphilic nature of many sugar derivatives. A constitutional requirement for the amphiphilic mesogen is that the molecule consists of distinct regions within the molecule that separately would have different responses to changes in thermal energies and/or solvations. Such molecules can be synthesized by linking one or more alkyl chains of appropriate length to both cyclic and acyclic sugars. A driving force for the mesophase formation in these molecules is the phase segregation, leading to aggregates, possessing distinct lyophilic and hydrophilic regions. In this review, we discuss the thermotropic behavior of the carbohydrate amphiphiles. We discuss the relationship between constitutions, configurations, functionalities of the sugar component and the length of the hydrophobic chains necessary to form the various types of thermotropic phases. The influence of the linking group between the hydrophilic sugar head groups and lyophilic alkyl chains on the transition temperatures and mesophase stabilities are also presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anisotropic emission of gravitational waves (GWs) from inspiralling compact binaries leads to the loss of linear momentum and hence gravitational recoil of the system. The loss rate of linear momentum in the far-zone of the source (a nonspinning binary system of black holes in quasicircular orbit) is investigated at the 2.5 post-Newtonian (PN) order and used to provide an analytical expression in harmonic coordinates for the 2.5PN accurate recoil velocity of the binary accumulated in the inspiral phase. The maximum recoil velocity of the binary system at the end of its inspiral phase (i.e at the innermost stable circular orbit (ISCO)) estimated by the 2.5PN formula is of the order of 4 km s(-1) which is smaller than the 2PN estimate of 22 km s(-1). Going beyond inspiral, we also provide an estimate of the more important contribution to the recoil velocity from the plunge phase. The maximum recoil velocity at the end of the plunge, involving contributions both from inspiral and plunge phase, for a binary with symmetric mass ratio nu = 0.2 is of the order of 182 km s(-1).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We derive sum rules which constrain the spectral density corresponding to the retarded propagator of the T-xy component of the stress tensor for three gravitational duals. The shear sum rule is obtained for the gravitational dual of the N = 4 Yang-Mills, theory of the M2-branes and M5-branes all at finite chemical potential. We show that at finite chemical potential there are additional terms in the sum rule which involve the chemical potential. These modifications are shown to be due to the presence of scalars in the operator product expansion of the stress tensor which have non-trivial vacuum expectation values at finite chemical potential.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The loss rate of linear momentum from a binary system composed of compact objects (radially falling towards each other under mutual gravitational influence) has been investigated using the multipolar post-Minkowskian approach. The 2.5PN accurate analytical formula for the linear momentum flux is provided, in terms of the separation of the two objects, in harmonic coordinates, both for a finite and an infinite initial separation. The 2.5PN formulas for the linear momentum flux are finally used to estimate the recoil velocity accumulated during a premerger phase of the binary evolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A perturbation of FtsZ assembly dynamics has been shown to inhibit bacterial cytokinesis. In this study, the antibacterial activity of 151 rhodanine compounds was assayed using Bacillus subtilis cells. Of 151 compounds, eight strongly inhibited bacterial proliferation at 2 mu M. Subsequently, we used the elongation of B. subtilis cells as a secondary screen to identify potential FtsZ-targeted antibacterial agents. We found that three compounds significantly increased bacterial cell length. One of the three compounds, namely, CCR-11 (E)-2-thioxo-5-({3-(trifluoromethyl)phenyl]furan-2-yl}methylene) thiazolidin-4-one], inhibited the assembly and GTPase activity of FtsZ in vitro. CCR-11 bound to FtsZ with a dissociation constant of 1.5 +/- 0.3 mu M. A docking analysis indicated that CCR-11 may bind to FtsZ in a cavity adjacent to the T7 loop and that short halogen oxygen, H-bonding, and hydrophobic interactions might be important for the binding of CCR-11 with FtsZ. CCR-11 inhibited the proliferation of B. subtilis cells with a half-maximal inhibitory concentration (IC50) of 1.2 +/- 0.2 mu M and a minimal inhibitory concentration of 3 mu M. It also potently inhibited proliferation of Mycobacterium smegmatis cells. Further, CCR-11 perturbed Z-ring formation in B. subtilis cells; however, it neither visibly affected nucleoid segregation nor altered the membrane integrity of the cells. CCR-11 inhibited HeLa cell proliferation with an IC50 value of 18.1 +/- 0.2,mu M (similar to 15 x IC50 of B. subtilis cell proliferation). The results suggested that CCR-11 inhibits bacterial cytokinesis by inhibiting FtsZ assembly, and it can be used as a lead molecule to develop FtsZ-targeted antibacterial agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: Waardenburg syndrome (WS) is characterized by sensorineural hearing loss and pigmentation defects of the eye, skin, and hair. It is caused by mutations in one of the following genes: PAX3 (paired box 3), MITF (microphthalmia-associated transcription factor), EDNRB (endothelin receptor type B), EDN3 (endothelin 3), SNAI2 (snail homolog 2, Drosophila) and SOX10 (SRY-box containing gene 10). Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder caused by mutations in the DMD gene. The purpose of this study was to identify the genetic causes of WS and DMD in an Indian family with two patients: one affected with WS and DMD, and another one affected with only WS. Methods: Blood samples were collected from individuals for genomic DNA isolation. To determine the linkage of this family to the eight known WS loci, microsatellite markers were selected from the candidate regions and used to genotype the family. Exon-specific intronic primers for EDN3 were used to amplify and sequence DNA samples from affected individuals to detect mutations. A mutation in DMD was identified by multiplex PCR and multiplex ligation-dependent probe amplification method using exon-specific probes. Results: Pedigree analysis suggested segregation of WS as an autosomal recessive trait in the family. Haplotype analysis suggested linkage of the family to the WS4B (EDN3) locus. DNA sequencing identified a novel missense mutation p.T98M in EDN3. A deletion mutation was identified in DMD. Conclusions: This study reports a novel missense mutation in EDN3 and a deletion mutation in DMD in the same Indian family. The present study will be helpful in genetic diagnosis of this family and increases the mutation spectrum of EDN3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A peripherally clickable hyperbranched polyester carrying numerous propargyl terminal groups was prepared by a simple melt transesterification polycondensation of a suitably designed AB(2) monomer; this clickable hyperscaffold was then transformed into a variety of different derivatives by using the Cu-catalyzed azide-yne click reaction. Functionalization of the periphery with equimolar quantities of mutually immiscible segments, such as hydrocarbon, fluorocarbon, and PEG, yielded frustrated molecular systems that readapt and form structures wherein the immiscible segments appear to self-segregate to generate either Janus structures (when two immiscible segments are present) or tripodal structures (when three immiscible segments are present). Evidence for such self-segregation was obtained from a variety of studies, such as differential scanning calorimetry, Langmuir isotherms, AFM imaging, and small-angle X-ray scattering measurements. Crystallization of one or more of the peripheral segments reinforced this self-segregation; the weight-fraction-normalized enthalpies of melting associated with the different domains revealed a competition between the segments to optimize their crystalline organization. When one or more of the segments are amorphous, the remaining segments crystallize more effectively and consequently exhibit a higher melting enthalpy. AFM images of monolayers, transferred from the Langmuir trough, revealed that the thickness matches the expected values; furthermore, contact angle measurements clearly demonstrated that the monolayer films are fairly hydrophobic, and in the case of the tripodal hybramers, the presence of domains of hydrocarbon and fluorocarbon appears to impart nanoscale chemical heterogeneity that is reflected in the strong hysteresis in the advancing and receding contact angles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The way in which basal tractions, associated with mantle convection, couples with the lithosphere is a fundamental problem in geodynamics. A successful lithosphere-mantle coupling model for the Earth will satisfy observations of plate motions, intraplate stresses, and the plate boundary zone deformation. We solve the depth integrated three-dimensional force balance equations in a global finite element model that takes into account effects of both topography and shallow lithosphere structure as well as tractions originating from deeper mantle convection. The contribution from topography and lithosphere structure is estimated by calculating gravitational potential energy differences. The basal tractions are derived from a fully dynamic flow model with both radial and lateral viscosity variations. We simultaneously fit stresses and plate motions in order to delineate a best-fit lithosphere-mantle coupling model. We use both the World Stress Map and the Global Strain Rate Model to constrain the models. We find that a strongly coupled model with a stiff lithosphere and 3-4 orders of lateral viscosity variations in the lithosphere are best able to match the observational constraints. Our predicted deviatoric stresses, which are dominated by contribution from mantle tractions, range between 20-70 MPa. The best-fitting coupled models predict strain rates that are consistent with observations. That is, the intraplate areas are nearly rigid whereas plate boundaries and some other continental deformation zones display high strain rates. Comparison of mantle tractions and surface velocities indicate that in most areas tractions are driving, although in a few regions, including western North America, tractions are resistive. Citation: Ghosh, A., W. E. Holt, and L. M. Wen (2013), Predicting the lithospheric stress field and plate motions by joint modeling of lithosphere and mantle dynamics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the current study, the puckering states of the Proline ring occurring in diproline segments (LPro-LPro) in proteins has been investigated with a segregation made on the basis of cis and trans states for the Pro-Pro peptide bond and the conformational states for the diproline segment to investigate the effects of conformation of the diproline segment on the corresponding puckering state of the Proline ring in the segment if any. The value of the endocyclic ring torsional angles of the pyrrolidine ring has been used for calculating and visualizing various puckering states using a proposed new sign convention (+/-) nomenclature. The results have been compared to that obtained in a previous study on peptides from this group. In this study, quite interestingly, the Planar (G) conformation that was present in 14.3% of the cases in peptides, appears to be nearly a rare conformation in the case of proteins (1.9%). The present study indicates that the (C-exo/C-exo), (C-exo/Twisted C-exo-C-endo) and (Twisted C-endo-C-exo/Twisted C-endo-C-exo) categories are the most preferred combinations. For Proline rings in proteins, the states C-exo, Twisted C-exo-C-endo and Twisted C-endo-C-exo are the most preferred states. Within diproline segments, the pyrrolidine ring conformations do not show a strong co-relation to the backbone conformation in which they are observed. It is likely that five-membered rings have a considerable plasticity of structure and are readily deformed to accommodate a variety of energetically preferred backbone conformations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The forces that cause deformation of western North America have been debated for decades. Recent studies, primarily based on analysis of crustal stresses in the western United States, have suggested that the deformation of the region is mainly controlled by gravitational potential energy (GPE) variations and boundary loads, with basal tractions due to mantle flow playing a relatively minor role. We address these issues by modelling the deviatoric stress field over western North America from a 3-D finite element mantle circulation model with lateral viscosity variations. Our approach takes into account the contribution from both topography and shallow lithosphere structure (GPE) as well as that from deeper mantle flow in one single model, as opposed to separate lithosphere and circulation models, as has been done so far. In addition to predicting the deviatoric stresses we also jointly fit the constraints of geoid, dynamic topography and plate motion both globally and over North America, in order to ensure that the forces that arise in our models are dynamically consistent. We examine the sensitivity of the dynamic models to different lateral viscosity variations. We find that circulation models that include upper mantle slabs yield a better fit to observed plate velocities. Our results indicate that a model of GPE variations coupled with mantle convection gives the best fit to the observational constraints. We argue that although GPE variations control a large part of the deformation of the western United States, deeper mantle tractions also play a significant role. The average deviatoric stress magnitudes in the western United States range 30-40 MPa. The cratonic region exhibits higher coupling to mantle flow than the rest of the continent. We find that a relatively strong San Andreas fault gives a better fit to the observational constraints, especially that of plate velocity in western North America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Msh4-Msh5 protein complex in eukaryotes is involved in stabilizing Holliday junctions and its progenitors to facilitate crossing over during Meiosis I. These functions of the Msh4-Msh5 complex are essential for proper chromosomal segregation during the first meiotic division. The Msh4/5 proteins are homologous to the bacterial mismatch repair protein MutS and other MutS homologs (Msh2, Msh3, Msh6). Saccharomyces cerevisiae msh4/5 point mutants were identified recently that show two fold reduction in crossing over, compared to wild-type without affecting chromosome segregation. Three distinct classes of msh4/5 point mutations could be sorted based on their meiotic phenotypes. These include msh4/5 mutations that have a) crossover and viability defects similar to msh4/5 null mutants; b) intermediate defects in crossing over and viability and c) defects only in crossing over. The absence of a crystal structure for the Msh4-Msh5 complex has hindered an understanding of the structural aspects of Msh4-Msh5 function as well as molecular explanation for the meiotic defects observed in msh4/5 mutations. To address this problem, we generated a structural model of the S. cerevisiae Msh4-Msh5 complex using homology modeling. Further, structural analysis tailored with evolutionary information is used to predict sites with potentially critical roles in Msh4-Msh5 complex formation, DNA binding and to explain asymmetry within the Msh4-Msh5 complex. We also provide a structural rationale for the meiotic defects observed in the msh4/5 point mutations. The mutations are likely to affect stability of the Msh4/5 proteins and/or interactions with DNA. The Msh4-Msh5 model will facilitate the design and interpretation of new mutational data as well as structural studies of this important complex involved in meiotic chromosome segregation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanoindentation technique is utilized to examine mechanical property variation in Eu doped Na0.5Bi0.5 TiO3 (NBT). Doping levels of Eu in NBT is systematically varied. Dilute doping results in a linear reduction in both modulus and hardness. At higher concentrations, a recovery of the mechanical properties (to undoped NBT values) is observed. These experimental trends mirror variations in the optical emission intensities with Eu concentration. Observed trends are rationalized on the basis of a model, which hypothesizes phase segregation beyond a critical Eu doping level. Such segregation leads to the formation of pure NBT, nano-Eu saturated NBT, and nano-mixed Eu oxides in the microstructure. Pure NBT is optically inactive, while saturated Eu:NBT is a much better emitter when compared to europium oxide. Hence beyond the critical concentration, luminescence signal comes primarily from the saturated Eu:NBT phase. The model presented is supported by nanoindentation, and spectroscopic results. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rice landraces are lineages developed by farmers through artificial selection during the long-term domestication process. Despite huge potential for crop improvement, they are largely understudied in India. Here, we analyse a suite of phenotypic characters from large numbers of Indian landraces comprised of both aromatic and non-aromatic varieties. Our primary aim was to investigate the major determinants of diversity, the strength of segregation among aromatic and non-aromatic landraces as well as that within aromatic landraces. Using principal component analysis, we found that grain length, width and weight, panicle weight and leaf length have the most substantial contribution. Discriminant analysis can effectively distinguish the majority of aromatic from non-aromatic landraces. More interestingly, within aromatic landraces long-grain traditional Basmati and short-grain non-Basmati aromatics remain morphologically well differentiated. The present research emphasizes the general patterns of phenotypic diversity and finds out the most important characters. It also confirms the existence of very unique short-grain aromatic landraces, perhaps carrying signatures of independent origin of an additional aroma quantitative trait locus in the indica group, unlike introgression of specific alleles of the BADH2 gene from the japonica group as in Basmati. We presume that this parallel origin and evolution of aroma in short-grain indica landraces are linked to the long history of rice domestication that involved inheritance of several traits from Oryza nivara, in addition to O. rufipogon. We conclude with a note that the insights from the phenotypic analysis essentially comprise the first part, which will likely be validated with subsequent molecular analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A colloid supported against gravitational settling by means of an imposed electric field behaves, on average, as if it is at equilibrium in a confining potential T. M. Squires, J. Fluid Mech. 443, 403 (2001)]. We show, however, that the effective Langevin equation for the colloid contains a nonequilibrium noise source, proportional to the field, arising from the thermal motion of dissolved ions. The position fluctuations of the colloid show strong, experimentally testable signatures of nonequilibrium behavior, including a highly anisotropic, frequency-dependent ``effective temperature'' obtained from the fluctuation-dissipation ratio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a specific kind of failure in ethylene cracking coils coated with anticoking film. It investigates a case in which the coils made of 35Cr 45Ni high temperature alloy failed within two years of operation. The damage occurred due to heavy oxidation in localized regions of the coil resulting in the formation of blisters, which eventually failed by cracking. The mechanism involved was determined by studying the oxidized samples under a scanning electron microscope with an energy dispersive system and is attributed to the presence of rare earth metals in the anti-coking film and inherent casting defects in the base alloy. The cerium present in the anti-coking film diffused preferentially to a defect site in the parent alloy thereby resulting in its segregation which further led to embrittlement. (C) 2014 Elsevier Ltd. All rights reserved.