890 resultados para Generation Dispatch, Power Generation, Power System Simulation, Wind Energy Integration
Resumo:
Salinity gradient power (SGP) is the energy that can be obtained from the mixing entropy of two solutions with a different salt concentration. River estuary, as a place for mixing salt water and fresh water, has a huge potential of this renewable energy. In this study, this potential in the estuaries of rivers leading to the Persian Gulf and the factors affecting it are analysis and assessment. Since most of the full water rivers are in the Asia, this continent with the potential power of 338GW is a second major source of energy from the salinity gradient power in the world (Wetsus institute, 2009). Persian Gulf, with the proper salinity gradient in its river estuaries, has Particular importance for extraction of this energy. Considering the total river flow into the Persian Gulf, which is approximately equal to 3486 m3/s, the amount of theoretical extractable power from salinity gradient in this region is 5.2GW. Iran, with its numerous rivers along the coast of the Persian Gulf, has a great share of this energy source. For example, with study calculations done on data from three hydrometery stations located on the Arvand River, Khorramshahr Station with releasing 1.91M/ energy which is obtained by combining 1.26m3 river water with 0.74 m3 sea water, is devoted to itself extracting the maximum amount of extractable energy. Considering the average of annual discharge of Arvand River in Khorramshahr hydrometery station, the amount of theoretical extractable power is 955 MW. Another part of parameters that are studied in this research, are the intrusion length of salt water and its flushing time in the estuary that have a significant influence on the salinity gradient power. According to the calculation done in conditions HWS and the average discharge of rivers, the maximum of salinity intrusion length in to the estuary of the river by 41km is related to Arvand River and the lowest with 8km is for Helle River. Also the highest rate of salt water flushing time in the estuary with 9.8 days is related to the Arvand River and the lowest with 3.3 days is for Helle River. Influence of these two parameters on reduces the amount of extractable energy from salinity gradient power as well as can be seen in the estuaries of the rivers studied. For example, at the estuary of the Arvand River in the interval 8.9 days, salinity gradient power decreases 9.2%. But another part of this research focuses on the design of a suitable system for extracting electrical energy from the salinity gradient. So far, five methods have been proposed to convert this energy to electricity that among them, reverse electro-dialysis (RED) method and pressure-retarded osmosis (PRO) method have special importance in practical terms. In theory both techniques generate the same amount of energy from given volumes of sea and river water with specified salinity; in practice the RED technique seems to be more attractive for power generation using sea water and river water. Because it is less necessity of salinity gradient to PRO method. In addition to this, in RED method, it does not need to use turbine to change energy and the electricity generation is started when two solutions are mixed. In this research, the power density and the efficiency of generated energy was assessment by designing a physical method. The physical designed model is an unicellular reverse electro-dialysis battery with nano heterogenic membrane has 20cmx20cm dimension, which produced power density 0.58 W/m2 by using river water (1 g NaCl/lit) and sea water (30 g NaCl/lit) in laboratorial condition. This value was obtained because of nano method used on the membrane of this system and suitable design of the cell which led to increase the yield of the system efficiency 11% more than non nano ones.
Resumo:
La electricidad es un insumo fundamental para el desarrollo actual de la humanidad, es la pieza clave en aspectos que cubren desde necesidades básicas como el acceso a la salud, educación, vivienda y alimentos, hasta hacer parte esencial del desarrollo tecnológico y económico de un territorio -- En Colombia, la cadena productiva de la generación de energía -bajo una matriz predominante hidroeléctrica- tiene asociados impactos ambientales y sociales como la alteración de los regímenes hidrológicos, el transporte de sedimentos, las migraciones ícticas, el desplazamiento de las comunidades, las condiciones de seguridad alimentaria de las poblaciones afectadas aguas abajo y los procesos de erosión remontante asociados con la construcción de represas, entre otros -- El impacto no solo se presenta en la etapa de construcción, puesto que la generación, transmisión, distribución y uso final generan una huella de carbono bastante significativa -- Si bien el sector eléctrico no es el único generador de gases nocivos, dicha plataforma económica genera por sí sola el 40% de emisiones de dióxido de carbono mundiales y por lo menos el 25% del total de todos los gases efecto invernadero, tal como lo afirma el GWEC, Global Wind Energy Council (Sawyer, 2011: 66); por lo que la implementación de una solución de producción de energía limpia implica la reducción sustancial de las emisiones nocivas para el planeta tierra -- Con el propósito de intensificar la aplicación de energías renovables dentro de la matriz energética internacional, la ONU designó el 2012 como el año oficial de las energías renovables -- El resultado se ve reflejado en la iniciativa Energía Sostenible para Todos - SE4ALL, mediante la cual se plantean tres objetivos que deberán ser alcanzados con la participación y contribución de los países miembros de la ONU: 1) Acceso universal a servicios modernos de energía, 2) Mejora en eficiencia energética y 3) Duplicación de la participación de energías renovables en la matriz energética mundial (SE4ALL, 2012) -- Sumado a esto, el desarrollo y aplicación de energías renovables son herramientas importantes para la mitigación y adaptación al cambio climático en la medida en que reducen gases de efecto invernadero (GEI) y diversifican la canasta energética de los países (FEDESARROLLO, 2013) -- Este trabajo evalúa la posibilidad de incrementar la competitividad nacional y regional a partir de la generación local de energía en el municipio de Pereira y las ventajas de la generación distribuida respecto a la generación centralizada en términos de eficiencia energética, evidenciando el potencial eólico del municipio para su utilización en la generación de energía eléctrica -- La energía eólica, fuente autóctona de electricidad, representa una alternativa para la modificación del modelo productivo convencional, siendo una tecnología competitiva no solo dentro de las renovables sino también con respecto a la cogeneración de energía -- La implementación de ella tiene implícito un mejor aprovechamiento del espacio, un impacto ambiental bajo y un desarrollo a nivel de investigación y tecnología importante -- Su implementación no contamina, contribuyendo a la disminución de emisiones de dióxido de carbono, aportando de este modo en la solución de la crisis ecológica mundial y la desaceleración del cambio climático -- La tecnología eólica representa entonces una alternativa a tener en cuenta para la generación de energía limpia, frente a otras formas tradicionales altamente contaminantes o de gran impacto ambiental -- Pese a todos los factores de importancia que ha adquirido el desarrollo en la materia, existe un número muy limitado de investigaciones que aborden la temática de aplicabilidad de estos criterios en Colombia; específicamente en Pereira no existía a la fecha ningún adelanto investigativo -- La importancia de este estudio radica en el potencial descubierto en un entorno que no había sido explorado, llegando a ser determinante para el futuro desarrollo tecnológico en este campo y dando apertura a otras investigaciones que complementen el presente estudio
Resumo:
The analysis of the wind flow around buildings has a great interest from the point of view of the wind energy assessment, pollutant dispersion control, natural ventilation and pedestrians wind comfort and safety. Since LES turbulence models are computationally time consuming when applied to real geometries, RANS models are still widely used. However, RANS models are very sensitive to the chosen turbulence parametrisation and the results can vary according to the application. In this investigation, the simulation of the wind flow around an isolated building is performed using various types of RANS turbulence models in the open source code OpenFOAM, and the results are compared with benchmark experimental data. In order to confirm the numerical accuracy of the simulations, a grid dependency analysis is performed and the convergence index and rate are calculated. Hit rates are calculated for all the cases and the models that successfully pass a validation criterion are analysed at different regions of the building roof, and the most accurate RANS models for the modelling of the flow at each region are identified. The characteristics of the wind flow at each region are also analysed from the point of view of the wind energy generation, and the most adequate wind turbine model for the wind energy exploitation at each region of the building roof is chosen.
Resumo:
Modern power networks incorporate communications and information technology infrastructure into the electrical power system to create a smart grid in terms of control and operation. The smart grid enables real-time communication and control between consumers and utility companies allowing suppliers to optimize energy usage based on price preference and system technical issues. The smart grid design aims to provide overall power system monitoring, create protection and control strategies to maintain system performance, stability and security. This dissertation contributed to the development of a unique and novel smart grid test-bed laboratory with integrated monitoring, protection and control systems. This test-bed was used as a platform to test the smart grid operational ideas developed here. The implementation of this system in the real-time software creates an environment for studying, implementing and verifying novel control and protection schemes developed in this dissertation. Phasor measurement techniques were developed using the available Data Acquisition (DAQ) devices in order to monitor all points in the power system in real time. This provides a practical view of system parameter changes, system abnormal conditions and its stability and security information system. These developments provide valuable measurements for technical power system operators in the energy control centers. Phasor Measurement technology is an excellent solution for improving system planning, operation and energy trading in addition to enabling advanced applications in Wide Area Monitoring, Protection and Control (WAMPAC). Moreover, a virtual protection system was developed and implemented in the smart grid laboratory with integrated functionality for wide area applications. Experiments and procedures were developed in the system in order to detect the system abnormal conditions and apply proper remedies to heal the system. A design for DC microgrid was developed to integrate it to the AC system with appropriate control capability. This system represents realistic hybrid AC/DC microgrids connectivity to the AC side to study the use of such architecture in system operation to help remedy system abnormal conditions. In addition, this dissertation explored the challenges and feasibility of the implementation of real-time system analysis features in order to monitor the system security and stability measures. These indices are measured experimentally during the operation of the developed hybrid AC/DC microgrids. Furthermore, a real-time optimal power flow system was implemented to optimally manage the power sharing between AC generators and DC side resources. A study relating to real-time energy management algorithm in hybrid microgrids was performed to evaluate the effects of using energy storage resources and their use in mitigating heavy load impacts on system stability and operational security.
Resumo:
This paper presents a computer application for wind energy bidding in a day-ahead electricity market to better accommodate the variability of the energy source. The computer application is based in a stochastic linear mathematical programming problem. The goal is to obtain the optimal bidding strategy in order to maximize the revenue. Electricity prices and financial penalties for shortfall or surplus energy deliver are modeled. Finally, conclusions are drawn from an illustrative case study, using data from the day-ahead electricity market of the Iberian Peninsula.
Resumo:
Evolution of the traditional consumer in a power system to a prosumer has posed many problems in the traditional uni-directional grid. This evolution in the grid model has made it important to study the behaviour of microgrids. This thesis deals with the laboratory microgrid setup at the Munich School of Engineering, built to assist researchers in studying microgrids. The model is built in Dymola which is a tool for the OpenModelica language. Models for the different components were derived, suiting the purpose of this study. The equivalent parameters were derived from data sheets and other simulation programs such as PSCAD. The parameters were entered into the model grid and tested at steady state, firstly. This yielded satisfactory results that were similar to the reference results from MATPOWER power flow. Furthermore, fault conditions at several buses were simulated to observe the behaviour of the grid under these conditions. Recommendations for further developing this model to include more detailed models for components, such as power electronic converters, were made at the end of the thesis.
Resumo:
The continuous growth of global population brings an exponential increase on energy consumption and greenhouse gas emission in the atmosphere contributing to the increase of the planet temperature. Therefore, it is mandatory to adopt renewable energy production systems like photovoltaic or wind power: unfortunately, the main limit of these technologies is the natural intermittence of the energy sources that limits their applicability. The key enabling technology for a widespread usage of clean power sources are electrochemical energy storage systems, most commonly known as batteries. Batteries will enable the storage of energy during overproduction period and the release during low production period stabilizing the power outcome, allowing the connection to the main grid and increasing the applicability of renewable energy sources. Despite the high number of benefits that the widespread use of batteries will bring, starting from the reduction of CO2 emitted in the atmosphere, it is necessary also to take care of the environmental impact of processes and materials used for the production of electrochemical storage systems. In addition, there are many different battery systems, with different chemistries and designs that require specific strategies. Nowadays, the most part of the materials and chemicals used for battery production are toxic for humans and the environment. For this reason, this Ph.D. thesis addresses the challenging scope of lowering the environmental impact of manufacturing processes of different electrochemical energy storage systems using natural derived or low carbon footprint materials while increasing the performances with respect to commercial devices. The activities carried out during my Ph.D. cover a high number of different electrochemical storage systems involving a wide range of electrochemical processes from capacitive to faradic. New materials, different production processes and new battery design, all in view of sustainability and low environmental impact, increased the innovative and challenging aspects of this work.
Resumo:
With the aim of heading towards a more sustainable future, there has been a noticeable increase in the installation of Renewable Energy Sources (RES) in power systems in the latest years. Besides the evident environmental benefits, RES pose several technological challenges in terms of scheduling, operation, and control of transmission and distribution power networks. Therefore, it raised the necessity of developing smart grids, relying on suitable distributed measurement infrastructure, for instance, based on Phasor Measurement Units (PMUs). Not only are such devices able to estimate a phasor, but they can also provide time information which is essential for real-time monitoring. This Thesis falls within this context by analyzing the uncertainty requirements of PMUs in distribution and transmission applications. Concerning the latter, the reliability of PMU measurements during severe power system events is examined, whereas for the first, typical configurations of distribution networks are studied for the development of target uncertainties. The second part of the Thesis, instead, is dedicated to the application of PMUs in low-inertia power grids. The replacement of traditional synchronous machines with inertia-less RES is progressively reducing the overall system inertia, resulting in faster and more severe events. In this scenario, PMUs may play a vital role in spite of the fact that no standard requirements nor target uncertainties are yet available. This Thesis deeply investigates PMU-based applications, by proposing a new inertia index relying only on local measurements and evaluating their reliability in low-inertia scenarios. It also develops possible uncertainty intervals based on the electrical instrumentation currently used in power systems and assesses the interoperability with other devices before and after contingency events.
Resumo:
Photoplethysmography (PPG) sensors allow for noninvasive and comfortable heart-rate (HR) monitoring, suitable for compact wearable devices. However, PPG signals collected from such devices often suffer from corruption caused by motion artifacts. This is typically addressed by combining the PPG signal with acceleration measurements from an inertial sensor. Recently, different energy-efficient deep learning approaches for heart rate estimation have been proposed. To test these new solutions, in this work, we developed a highly wearable platform (42mm x 48 mm x 1.2mm) for PPG signal acquisition and processing, based on GAP9, a parallel ultra low power system-on-chip featuring nine cores RISC-V compute cluster with neural network accelerator and 1 core RISC-V controller. The hardware platform also integrates a commercial complete Optical Biosensing Module and an ARM-Cortex M4 microcontroller unit (MCU) with Bluetooth low-energy connectivity. To demonstrate the capabilities of the system, a deep learning-based approach for PPG-based HR estimation has been deployed. Thanks to the reduced power consumption of the digital computational platform, the total power budget is just 2.67 mW providing up to 5 days of operation (105 mAh battery).
Resumo:
Instrument transformers serve an important role in the protection and isolation of AC electrical systems for measurements of different electrical parameters like voltage, current, power factor, frequency, and energy. As suggested by name these transformers are used in connection with suitable measuring instruments like an ammeter, wattmeter, voltmeter, and energy meters. We have seen how higher voltages and currents are transformed into lower magnitudes to provide isolation between power networks, relays, and other instruments. Reducing transient, suppressing electrical noises in sensitive devices, standardization of instruments and relays up to a few volts and current. Transformer performance directly affects the accuracy of power system measurements and the reliability of relay protection. We classified transformers in terms of purpose, insulating medium, Voltage ranges, temperature ranges, humidity or environmental effect, indoor and outdoor use, performance, Features, specification, efficiency, cost analysis, application, benefits, and limitations which enabled us to comprehend their correct use and selection criteria based on our desired requirements. We also discussed modern Low power instrument transformer products that are recently launched or offered by renowned companies like Schneider Electric, Siemens, ABB, ZIV, G&W etc. These new products are innovations and problem solvers in the domain of measurement, protection, digital communication, advance, and commercial energy metering. Since there is always some space for improvements to explore new advantages of Low power instrument transformers in the domain of their wide linearity, high-frequency range, miniaturization, structural and technological modification, integration, smart frequency modeling, and output prediction of low-power voltage transformers.
Resumo:
In this paper, artificial neural networks are employed in a novel approach to identify harmonic components of single-phase nonlinear load currents, whose amplitude and phase angle are subject to unpredictable changes, even in steady-state. The first six harmonic current components are identified through the variation analysis of waveform characteristics. The effectiveness of this method is tested by applying it to the model of a single-phase active power filter, dedicated to the selective compensation of harmonic current drained by an AC controller. Simulation and experimental results are presented to validate the proposed approach. (C) 2010 Elsevier B. V. All rights reserved.
Resumo:
A heuristic algorithm that employs fuzzy logic is proposed to the power system transmission expansion planning problem. The algorithm is based on the divide to conquer strategy, which is controlled by the fuzzy system. The algorithm provides high quality solutions with the use of fuzzy decision making, which is based on nondeterministic criteria to guide the search. The fuzzy system provides a self-adjusting mechanism that eliminates the manual adjustment of parameters to each system being solved. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This research presents a method for frequency estimation in power systems using an adaptive filter based on the Least Mean Square Algorithm (LMS). In order to analyze a power system, three-phase voltages were converted into a complex signal applying the alpha beta-transform and the results were used in an adaptive filtering algorithm. Although the use of the complex LMS algorithm is described in the literature, this paper deals with some practical aspects of the algorithm implementation. In order to reduce computing time, a coefficient generator was implemented. For the algorithm validation, a computing simulation of a power system was carried Out using the ATP software. Many different situations were Simulated for the performance analysis of the proposed methodology. The results were compared to a commercial relay for validation, showing the advantages of the new method. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a new approach, predictor-corrector modified barrier approach (PCMBA), to minimize the active losses in power system planning studies. In the PCMBA, the inequality constraints are transformed into equalities by introducing positive auxiliary variables. which are perturbed by the barrier parameter, and treated by the modified barrier method. The first-order necessary conditions of the Lagrangian function are solved by predictor-corrector Newton`s method. The perturbation of the auxiliary variables results in an expansion of the feasible set of the original problem, reaching the limits of the inequality constraints. The feasibility of the proposed approach is demonstrated using various IEEE test systems and a realistic power system of 2256-bus corresponding to the Brazilian South-Southeastern interconnected system. The results show that the utilization of the predictor-corrector method with the pure modified barrier approach accelerates the convergence of the problem in terms of the number of iterations and computational time. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This research presents the development and implementation in a computational routine of algorithms for fault location in multiterminal transmission lines. These algorithms are part of a fault-location system, which is capable of correctly identifying the fault point based on voltage and current phasor quantities, calculated by using measurements of voltage and current signals from intelligent electronic devices, located on the transmission-line terminals. The algorithms have access to the electrical parameters of the transmission lines and to information about the transformers loading and their connection type. This paper also presents the development of phase component models for the power system elements used by the fault-location algorithms.