900 resultados para Generalized Gaussian-noise
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Cette thèse présente des méthodes de traitement de données de comptage en particulier et des données discrètes en général. Il s'inscrit dans le cadre d'un projet stratégique du CRNSG, nommé CC-Bio, dont l'objectif est d'évaluer l'impact des changements climatiques sur la répartition des espèces animales et végétales. Après une brève introduction aux notions de biogéographie et aux modèles linéaires mixtes généralisés aux chapitres 1 et 2 respectivement, ma thèse s'articulera autour de trois idées majeures. Premièrement, nous introduisons au chapitre 3 une nouvelle forme de distribution dont les composantes ont pour distributions marginales des lois de Poisson ou des lois de Skellam. Cette nouvelle spécification permet d'incorporer de l'information pertinente sur la nature des corrélations entre toutes les composantes. De plus, nous présentons certaines propriétés de ladite distribution. Contrairement à la distribution multidimensionnelle de Poisson qu'elle généralise, celle-ci permet de traiter les variables avec des corrélations positives et/ou négatives. Une simulation permet d'illustrer les méthodes d'estimation dans le cas bidimensionnel. Les résultats obtenus par les méthodes bayésiennes par les chaînes de Markov par Monte Carlo (CMMC) indiquent un biais relatif assez faible de moins de 5% pour les coefficients de régression des moyennes contrairement à ceux du terme de covariance qui semblent un peu plus volatils. Deuxièmement, le chapitre 4 présente une extension de la régression multidimensionnelle de Poisson avec des effets aléatoires ayant une densité gamma. En effet, conscients du fait que les données d'abondance des espèces présentent une forte dispersion, ce qui rendrait fallacieux les estimateurs et écarts types obtenus, nous privilégions une approche basée sur l'intégration par Monte Carlo grâce à l'échantillonnage préférentiel. L'approche demeure la même qu'au chapitre précédent, c'est-à-dire que l'idée est de simuler des variables latentes indépendantes et de se retrouver dans le cadre d'un modèle linéaire mixte généralisé (GLMM) conventionnel avec des effets aléatoires de densité gamma. Même si l'hypothèse d'une connaissance a priori des paramètres de dispersion semble trop forte, une analyse de sensibilité basée sur la qualité de l'ajustement permet de démontrer la robustesse de notre méthode. Troisièmement, dans le dernier chapitre, nous nous intéressons à la définition et à la construction d'une mesure de concordance donc de corrélation pour les données augmentées en zéro par la modélisation de copules gaussiennes. Contrairement au tau de Kendall dont les valeurs se situent dans un intervalle dont les bornes varient selon la fréquence d'observations d'égalité entre les paires, cette mesure a pour avantage de prendre ses valeurs sur (-1;1). Initialement introduite pour modéliser les corrélations entre des variables continues, son extension au cas discret implique certaines restrictions. En effet, la nouvelle mesure pourrait être interprétée comme la corrélation entre les variables aléatoires continues dont la discrétisation constitue nos observations discrètes non négatives. Deux méthodes d'estimation des modèles augmentés en zéro seront présentées dans les contextes fréquentiste et bayésien basées respectivement sur le maximum de vraisemblance et l'intégration de Gauss-Hermite. Enfin, une étude de simulation permet de montrer la robustesse et les limites de notre approche.
Resumo:
The first two articles build procedures to simulate vector of univariate states and estimate parameters in nonlinear and non Gaussian state space models. We propose state space speci fications that offer more flexibility in modeling dynamic relationship with latent variables. Our procedures are extension of the HESSIAN method of McCausland[2012]. Thus, they use approximation of the posterior density of the vector of states that allow to : simulate directly from the state vector posterior distribution, to simulate the states vector in one bloc and jointly with the vector of parameters, and to not allow data augmentation. These properties allow to build posterior simulators with very high relative numerical efficiency. Generic, they open a new path in nonlinear and non Gaussian state space analysis with limited contribution of the modeler. The third article is an essay in commodity market analysis. Private firms coexist with farmers' cooperatives in commodity markets in subsaharan african countries. The private firms have the biggest market share while some theoretical models predict they disappearance once confronted to farmers cooperatives. Elsewhere, some empirical studies and observations link cooperative incidence in a region with interpersonal trust, and thus to farmers trust toward cooperatives. We propose a model that sustain these empirical facts. A model where the cooperative reputation is a leading factor determining the market equilibrium of a price competition between a cooperative and a private firm
Resumo:
Nous développons dans cette thèse, des méthodes de bootstrap pour les données financières de hautes fréquences. Les deux premiers essais focalisent sur les méthodes de bootstrap appliquées à l’approche de "pré-moyennement" et robustes à la présence d’erreurs de microstructure. Le "pré-moyennement" permet de réduire l’influence de l’effet de microstructure avant d’appliquer la volatilité réalisée. En se basant sur cette ap- proche d’estimation de la volatilité intégrée en présence d’erreurs de microstructure, nous développons plusieurs méthodes de bootstrap qui préservent la structure de dépendance et l’hétérogénéité dans la moyenne des données originelles. Le troisième essai développe une méthode de bootstrap sous l’hypothèse de Gaussianité locale des données financières de hautes fréquences. Le premier chapitre est intitulé: "Bootstrap inference for pre-averaged realized volatility based on non-overlapping returns". Nous proposons dans ce chapitre, des méthodes de bootstrap robustes à la présence d’erreurs de microstructure. Particulièrement nous nous sommes focalisés sur la volatilité réalisée utilisant des rendements "pré-moyennés" proposés par Podolskij et Vetter (2009), où les rendements "pré-moyennés" sont construits sur des blocs de rendements à hautes fréquences consécutifs qui ne se chevauchent pas. Le "pré-moyennement" permet de réduire l’influence de l’effet de microstructure avant d’appliquer la volatilité réalisée. Le non-chevauchement des blocs fait que les rendements "pré-moyennés" sont asymptotiquement indépendants, mais possiblement hétéroscédastiques. Ce qui motive l’application du wild bootstrap dans ce contexte. Nous montrons la validité théorique du bootstrap pour construire des intervalles de type percentile et percentile-t. Les simulations Monte Carlo montrent que le bootstrap peut améliorer les propriétés en échantillon fini de l’estimateur de la volatilité intégrée par rapport aux résultats asymptotiques, pourvu que le choix de la variable externe soit fait de façon appropriée. Nous illustrons ces méthodes en utilisant des données financières réelles. Le deuxième chapitre est intitulé : "Bootstrapping pre-averaged realized volatility under market microstructure noise". Nous développons dans ce chapitre une méthode de bootstrap par bloc basée sur l’approche "pré-moyennement" de Jacod et al. (2009), où les rendements "pré-moyennés" sont construits sur des blocs de rendements à haute fréquences consécutifs qui se chevauchent. Le chevauchement des blocs induit une forte dépendance dans la structure des rendements "pré-moyennés". En effet les rendements "pré-moyennés" sont m-dépendant avec m qui croît à une vitesse plus faible que la taille d’échantillon n. Ceci motive l’application d’un bootstrap par bloc spécifique. Nous montrons que le bloc bootstrap suggéré par Bühlmann et Künsch (1995) n’est valide que lorsque la volatilité est constante. Ceci est dû à l’hétérogénéité dans la moyenne des rendements "pré-moyennés" au carré lorsque la volatilité est stochastique. Nous proposons donc une nouvelle procédure de bootstrap qui combine le wild bootstrap et le bootstrap par bloc, de telle sorte que la dépendance sérielle des rendements "pré-moyennés" est préservée à l’intérieur des blocs et la condition d’homogénéité nécessaire pour la validité du bootstrap est respectée. Sous des conditions de taille de bloc, nous montrons que cette méthode est convergente. Les simulations Monte Carlo montrent que le bootstrap améliore les propriétés en échantillon fini de l’estimateur de la volatilité intégrée par rapport aux résultats asymptotiques. Nous illustrons cette méthode en utilisant des données financières réelles. Le troisième chapitre est intitulé: "Bootstrapping realized covolatility measures under local Gaussianity assumption". Dans ce chapitre nous montrons, comment et dans quelle mesure on peut approximer les distributions des estimateurs de mesures de co-volatilité sous l’hypothèse de Gaussianité locale des rendements. En particulier nous proposons une nouvelle méthode de bootstrap sous ces hypothèses. Nous nous sommes focalisés sur la volatilité réalisée et sur le beta réalisé. Nous montrons que la nouvelle méthode de bootstrap appliquée au beta réalisé était capable de répliquer les cummulants au deuxième ordre, tandis qu’il procurait une amélioration au troisième degré lorsqu’elle est appliquée à la volatilité réalisée. Ces résultats améliorent donc les résultats existants dans cette littérature, notamment ceux de Gonçalves et Meddahi (2009) et de Dovonon, Gonçalves et Meddahi (2013). Les simulations Monte Carlo montrent que le bootstrap améliore les propriétés en échantillon fini de l’estimateur de la volatilité intégrée par rapport aux résultats asymptotiques et les résultats de bootstrap existants. Nous illustrons cette méthode en utilisant des données financières réelles.
Resumo:
Chez plusieurs espèces, les neurones auditifs sensibles à la durée de la stimulation sont présents au niveau des collicules inférieurs. Toutefois, le décours temporel de leur développement fonctionnel est inconnu. Étant donné que le collicule supérieur est l’un des principaux relais sous-cortical impliqué dans l’intégration des stimuli audio-visuels, nous voulons déterminer si le collicule supérieur du rat contient de tels neurones et s’ils sont sensibles et sélectifs à différentes durées de stimulation auditive. De plus, l'originalité de cette étude est de déterminer les étapes de leur maturation fonctionnelle. Des enregistrements neuronaux unitaires et extra-cellulaires sont effectués dans le collicule supérieur de rats juvéniles (P15-P18, P21-P24, P27-P30) et adultes anesthésiés. La sensibilité à la durée est déterminée lors de la présentation de bruits gaussiens (2-10 dB SPL au-dessus du seuil) de durées variables (3-100 ms). Seulement un faible pourcentage des neurones du collicule supérieur est de type passe-bande (3-9% des neurones parmi les ratons et 20% chez les rats adultes). Une différence significative de la distribution entre les différents types de neurones auditifs sensibles à la durée est présente au cours du développement: les neurones de type passe-haut (63-75%) sont présents en majorité chez les groupes juvéniles alors que 43% des neurones sont de type insensible à la durée de la stimulation auditive chez les rats adultes. Ces résultats montrent qu’une population importante de neurones auditifs du collicule supérieur du rat est sensible à la durée des signaux sonores et qu’un développement fonctionnel important survient au cours du premier mois postnatal.
Resumo:
Des efforts de recherche considérables ont été déployés afin d'améliorer les résultats de traitement de cancers pulmonaires. L'étude de la déformation de l'anatomie du patient causée par la ventilation pulmonaire est au coeur du processus de planification de traitement radio-oncologique. À l'aide d'images de tomodensitométrie quadridimensionnelles (4DCT), une simulation dosimétrique peut être calculée sur les 10 ensembles d'images du 4DCT. Une méthode doit être employée afin de recombiner la dose de radiation calculée sur les 10 anatomies représentant une phase du cycle respiratoire. L'utilisation de recalage déformable d'images (DIR), une méthode de traitement d'images numériques, génère neuf champs vectoriels de déformation permettant de rapporter neuf ensembles d'images sur un ensemble de référence correspondant habituellement à la phase d'expiration profonde du cycle respiratoire. L'objectif de ce projet est d'établir une méthode de génération de champs de déformation à l'aide de la DIR conjointement à une méthode de validation de leur précision. Pour y parvenir, une méthode de segmentation automatique basée sur la déformation surfacique de surface à été créée. Cet algorithme permet d'obtenir un champ de déformation surfacique qui décrit le mouvement de l'enveloppe pulmonaire. Une interpolation volumétrique est ensuite appliquée dans le volume pulmonaire afin d'approximer la déformation interne des poumons. Finalement, une représentation en graphe de la vascularisation interne du poumon a été développée afin de permettre la validation du champ de déformation. Chez 15 patients, une erreur de recouvrement volumique de 7.6 ± 2.5[%] / 6.8 ± 2.1[%] et une différence relative des volumes de 6.8 ± 2.4 [%] / 5.9 ± 1.9 [%] ont été calculées pour le poumon gauche et droit respectivement. Une distance symétrique moyenne 0.8 ± 0.2 [mm] / 0.8 ± 0.2 [mm], une distance symétrique moyenne quadratique de 1.2 ± 0.2 [mm] / 1.3 ± 0.3 [mm] et une distance symétrique maximale 7.7 ± 2.4 [mm] / 10.2 ± 5.2 [mm] ont aussi été calculées pour le poumon gauche et droit respectivement. Finalement, 320 ± 51 bifurcations ont été détectées dans le poumons droit d'un patient, soit 92 ± 10 et 228 ± 45 bifurcations dans la portion supérieure et inférieure respectivement. Nous avons été en mesure d'obtenir des champs de déformation nécessaires pour la recombinaison de dose lors de la planification de traitement radio-oncologique à l'aide de la méthode de déformation hiérarchique des surfaces. Nous avons été en mesure de détecter les bifurcations de la vascularisation pour la validation de ces champs de déformation.
Resumo:
Neural Network has emerged as the topic of the day. The spectrum of its application is as wide as from ECG noise filtering to seismic data analysis and from elementary particle detection to electronic music composition. The focal point of the proposed work is an application of a massively parallel connectionist model network for detection of a sonar target. This task is segmented into: (i) generation of training patterns from sea noise that contains radiated noise of a target, for teaching the network;(ii) selection of suitable network topology and learning algorithm and (iii) training of the network and its subsequent testing where the network detects, in unknown patterns applied to it, the presence of the features it has already learned in. A three-layer perceptron using backpropagation learning is initially subjected to a recursive training with example patterns (derived from sea ambient noise with and without the radiated noise of a target). On every presentation, the error in the output of the network is propagated back and the weights and the bias associated with each neuron in the network are modified in proportion to this error measure. During this iterative process, the network converges and extracts the target features which get encoded into its generalized weights and biases.In every unknown pattern that the converged network subsequently confronts with, it searches for the features already learned and outputs an indication for their presence or absence. This capability for target detection is exhibited by the response of the network to various test patterns presented to it.Three network topologies are tried with two variants of backpropagation learning and a grading of the performance of each combination is subsequently made.
Resumo:
The measurement of global precipitation is of great importance in climate modeling since the release of latent heat associated with tropical convection is one of the pricipal driving mechanisms of atmospheric circulation.Knowledge of the larger-scale precipitation field also has important potential applications in the generation of initial conditions for numerical weather prediction models Knowledge of the relationship between rainfall intensity and kinetic energy, and its variations in time and space is important for erosion prediction. Vegetation on earth also greatly depends on the total amount of rainfall as well as the drop size distribution (DSD) in rainfall.While methods using visible,infrared, and microwave radiometer data have been shown to yield useful estimates of precipitation, validation of these products for the open ocean has been hampered by the limited amount of surface rainfall measurements available for accurate assessement, especially for the tropical oceans.Surface rain fall measurements(often called the ground truth)are carried out by rain gauges working on various principles like weighing type,tipping bucket,capacitive type and so on.The acoustic technique is yet another promising method of rain parameter measurement that has many advantages. The basic principle of acoustic method is that the droplets falling in water produce underwater sound with distinct features, using which the rainfall parameters can be computed. The acoustic technique can also be used for developing a low cost and accurate device for automatic measurement of rainfall rate and kinetic energy of rain.especially suitable for telemetry applications. This technique can also be utilized to develop a low cost Disdrometer that finds application in rainfall analysis as well as in calibration of nozzles and sprinklers. This thesis is divided into the following 7 chapters, which describes the methodology adopted, the results obtained and the conclusions arrived at.
Resumo:
This thesis addresses one of the emerging topics in Sonar Signal Processing.,viz.the implementation of a target classifier for the noise sources in the ocean, as the operator assisted classification turns out to be tedious,laborious and time consuming.In the work reported in this thesis,various judiciously chosen components of the feature vector are used for realizing the newly proposed Hierarchical Target Trimming Model.The performance of the proposed classifier has been compared with the Euclidean distance and Fuzzy K-Nearest Neighbour Model classifiers and is found to have better success rates.The procedures for generating the Target Feature Record or the Feature vector from the spectral,cepstral and bispectral features have also been suggested.The Feature vector ,so generated from the noise data waveform is compared with the feature vectors available in the knowledge base and the most matching pattern is identified,for the purpose of target classification.In an attempt to improve the success rate of the Feature Vector based classifier,the proposed system has been augmented with the HMM based Classifier.Institutions where both the classifier decisions disagree,a contention resolving mechanism built around the DUET algorithm has been suggested.
Resumo:
Nonlinear time series analysis is employed to study the complex behaviour exhibited by a coupled pair of Rossler systems. Dimensional analysis with emphasis on the topological correlation dimension and the Kolmogorov entropy of the system is carried out in the coupling parameter space. The regime of phase synchronization is identified and the extent of synchronization between the systems constituting the coupled system is quantified by the phase synchronization index. The effect of noise on the coupling between the systems is also investigated. An exhaustive study of the topological, dynamical and synchronization properties of the nonlinear system under consideration in its characteristic parameter space is attempted.
Resumo:
The standard models for statistical signal extraction assume that the signal and noise are generated by linear Gaussian processes. The optimum filter weights for those models are derived using the method of minimum mean square error. In the present work we study the properties of signal extraction models under the assumption that signal/noise are generated by symmetric stable processes. The optimum filter is obtained by the method of minimum dispersion. The performance of the new filter is compared with their Gaussian counterparts by simulation.
Resumo:
A numerical study is presented of the third-dimensional Gaussian random-field Ising model at T=0 driven by an external field. Standard synchronous relaxation dynamics is employed to obtain the magnetization versus field hysteresis loops. The focus is on the analysis of the number and size distribution of the magnetization avalanches. They are classified as being nonspanning, one-dimensional-spanning, two-dimensional-spanning, or three-dimensional-spanning depending on whether or not they span the whole lattice in different space directions. Moreover, finite-size scaling analysis enables identification of two different types of nonspanning avalanches (critical and noncritical) and two different types of three-dimensional-spanning avalanches (critical and subcritical), whose numbers increase with L as a power law with different exponents. We conclude by giving a scenario for avalanche behavior in the thermodynamic limit.
Resumo:
Spanning avalanches in the 3D Gaussian Random Field Ising Model (3D-GRFIM) with metastable dynamics at T=0 have been studied. Statistical analysis of the field values for which avalanches occur has enabled a Finite-Size Scaling (FSS) study of the avalanche density to be performed. Furthermore, a direct measurement of the geometrical properties of the avalanches has confirmed an earlier hypothesis that several types of spanning avalanches with two different fractal dimensions coexist at the critical point. We finally compare the phase diagram of the 3D-GRFIM with metastable dynamics with the same model in equilibrium at T=0.
Resumo:
We report on experiments aimed at comparing the hysteretic response of a Cu-Zn-Al single crystal undergoing a martensitic transition under strain-driven and stress-driven conditions. Strain-driven experiments were performed using a conventional tensile machine while a special device was designed to perform stress-driven experiments. Significant differences in the hysteresis loops were found. The strain-driven curves show reentrant behavior yield point which is not observed in the stress-driven case. The dissipated energy in the stress-driven curves is larger than in the strain-driven ones. Results from recently proposed models qualitatively agree with experiments.
Resumo:
We predict the existence of an anomalous crossover between thermal and shot noise in macroscopic diffusive conductors. We first show that, besides thermal noise, these systems may also exhibit shot noise due to fluctuations of the total number of carriers in the system. Then we show that at increasing currents the crossover between the two noise behaviors is anomalous, in the sense that the low-frequency current spectral density displays a region with a superlinear dependence on the current up to a cubic law. The anomaly is due to the nontrivial coupling in the presence of the long-range Coulomb interaction among the three time scales relevant to the phenomenon, namely, diffusion, transit, and dielectric relaxation time.