977 resultados para Free material
Resumo:
A unit cube in k dimensions (k-cube) is defined as the Cartesian product R-1 x R-2 x ... x R-k where R-i (for 1 <= i <= k) is a closed interval of the form [a(i), a(i) + 1] on the real line. A graph G on n nodes is said to be representable as the intersection of k-cubes (cube representation in k dimensions) if each vertex of C can be mapped to a k-cube such that two vertices are adjacent in G if and only if their corresponding k-cubes have a non-empty intersection. The cubicity of G denoted as cub(G) is the minimum k for which G can be represented as the intersection of k-cubes. An interesting aspect about cubicity is that many problems known to be NP-complete for general graphs have polynomial time deterministic algorithms or have good approximation ratios in graphs of low cubicity. In most of these algorithms, computing a low dimensional cube representation of the given graph is usually the first step. We give an O(bw . n) algorithm to compute the cube representation of a general graph G in bw + 1 dimensions given a bandwidth ordering of the vertices of G, where bw is the bandwidth of G. As a consequence, we get O(Delta) upper bounds on the cubicity of many well-known graph classes such as AT-free graphs, circular-arc graphs and cocomparability graphs which have O(Delta) bandwidth. Thus we have: 1. cub(G) <= 3 Delta - 1, if G is an AT-free graph. 2. cub(G) <= 2 Delta + 1, if G is a circular-arc graph. 3. cub(G) <= 2 Delta, if G is a cocomparability graph. Also for these graph classes, there axe constant factor approximation algorithms for bandwidth computation that generate orderings of vertices with O(Delta) width. We can thus generate the cube representation of such graphs in O(Delta) dimensions in polynomial time.
Resumo:
Breast cancer is the most common malignancy in women in Western countries. It is a heterogeneous disease with varying biological characteristics and aggressiveness. Family history is one of the strongest predisposing factors for breast cancer. The known susceptibility genes explain only around 25% of all familial breast cancers. At least part of the unknown familial aggregation may be caused by several low-penetrance variants that occur commonly in the general population. Cyclins are cell cycle-regulating proteins. Cyclin expression oscillates during the cell cycle and is under strict control. In cancer cells, cyclin expression often becomes deregulated, leading to uncontrolled cell division and proliferation, one of the hallmarks of cancer. In this study, we investigated the role of cyclins in breast cancer predisposition, pathogenesis, and tumor behavior. Cyclin A immunohistochemistry was evaluated both on traditional large sections and on tissue microarrays (TMA). The concordance of the results was good, indicating that TMA is a reliable method for studying cyclin expression in breast cancer. The expression of cyclins D1, E, and B1 was studied among 1348 invasive breast cancers on TMA. Familial BRCA1/2-mutation negative tumors had significantly more often low cyclin E and high cyclin D1 expression than BRCA1/2 related or sporadic tumors. Unique cyclin E and D1 expression patterns among familial non-BRCA1/2 breast cancers may reflect different predisposition and pathogenesis in these groups and help to differentiate mutation-positive from mutation-negative familial cancers. High cyclin E expression was associated with an aggressive breast cancer phenotype and was an independent marker of poor metastasis-free survival. High cyclin D1 was associated with high grade and high proliferation among estrogen receptor (ER)-positive but with low grade and low proliferation among ER-negative breast cancers. Among ER-positive cancers not treated with chemotherapy, high cyclin D1 showed a trend towards shorter metastasis-free survival. These results suggest that different mechanisms may drive proliferation in ER-negative and -positive breast cancers and that cyclin D1 has a particularly important role in tumorigenesis of hormone receptor-positive breast cancer. High cyclin B1 expression was associated with aggressive breast cancer features and had an independent impact on survival. The results suggest that cyclin B1 immunohistochemistry is a method that could easily be adapted for routine use and is an independent prognostic factor, adding specificity to prognostic evaluation conducted with traditional markers. A commonly occurring cyclin D1 gene polymorphism A870G was associated with increased breast cancer risk in a large material of Finnish and Canadian breast cancer patients. The interaction of the high-activity alleles of cyclin D1 gene and estrogen metabolism gene COMT conferred an even higher risk. These results show that cyclin D1 and COMT act synergistically to contribute to breast cancer progression and that individual risk for breast cancer can be altered by the combined effect of polymorphisms with low-penetrance alleles. By investigating critical cell cycle regulator protein cyclins, we revealed new aspects of breast cancer predisposition, pathogenesis, and clinical course.
Resumo:
The paper presents a novel slicing based method for computation of volume fractions in multi-material solids given as a B-rep whose faces are triangulated and shared by either one or two materials. Such objects occur naturally in geoscience applications and the said computation is necessary for property estimation problems and iterative forward modeling. Each facet in the model is cut by the planes delineating the given grid structure or grid cells. The method, instead of classifying the points or cells with respect to the solid, exploits the convexity of triangles and the simple axis-oriented disposition of the cutting surfaces to construct a novel intermediate space enumeration representation called slice-representation, from which both the cell containment test and the volume-fraction computation are done easily. Cartesian and cylindrical grids with uniform and non-uniform spacings have been dealt with in this paper. After slicing, each triangle contributes polygonal facets, with potential elliptical edges, to the grid cells through which it passes. The volume fractions of different materials in a grid cell that is in interaction with the material interfaces are obtained by accumulating the volume contributions computed from each facet in the grid cell. The method is fast, accurate, robust and memory efficient. Examples illustrating the method and performance are included in the paper.
Resumo:
Highly ordered mesoporous carbon (MC) has been synthesized from sucrose, a non-toxic and costeffective source of carbon. X-ray diffraction, N2 adsorption–desorption isotherm and transmission electron micrograph (TEM) were used to characterize the MC. The XRD patterns show the formation of highly ordered mesoporous structures of SBA15 and mesoporous carbon. The N2 adsorptiondesorption isotherms suggest that the MC exhibits a narrow pore-size distribution with high surface area of 1559 m2/g. The potential application of MC as a novel electrode material was investigated using cyclic voltammetry for riboflavin (vitamin B2) and dopamine. MC-modified glassy carbon electrode (MC/GC) shows increase in peak current compared to GC electrode in potassium ferricyanide which clearly suggest that MC/GC possesses larger electrode area (1.8 fold) compared with bare GC electrode. The electrocatalytic behavior of MC/GC was investigated towards the oxidation of riboflavin (vitamin B2) and dopamine using cyclic voltammetry which show larger oxidation current compared to unmodified electrode and thus MC/GC may have the potential to be used as a chemically modified electrode.
Resumo:
The effect of the addition of glassy phases on the microstructure and dielectric properties of CaCu3Ti4O12 (CCTO) ceramics was investigated. Both single-component (B2O3) and multi-cornponent (30wt% BaO-60wt% B2O3-10wt% SiO2 (BBS)) glass systems were chosen to study their effect on the density, microstructure and dielectric properties of CCTO. Addition of an optimum amount of B2O3 glass facilitated grain growth and an increase in dielectric constant. However, further increase in the B2O3 content resulted in its segregation at the grain boundaries associated with a reduction in the grain size. In contrast, BBS glass addition resulted in well-faceted grains and increase in the dielectric constant and decrease in the dielectric loss. An internal barrier layer capacitance (IBLC) model was invoked to correlate the dielectric constant with the grain size in these samples. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
This paper presents a formulation of an approximate spectral element for uniform and tapered rotating Euler-Bernoulli beams. The formulation takes into account the varying centrifugal force, mass and bending stiffness. The dynamic stiffness matrix is constructed using the weak form of the governing differential equation in the frequency domain, where two different interpolating functions for the transverse displacement are used for the element formulation. Both free vibration and wave propagation analysis is performed using the formulated elements. The studies show that the formulated element predicts results, that compare well with the solution available in the literature, at a fraction of the computational effort. In addition, for wave propagation analysis, the element shows superior convergence. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A modified form of Green's integral theorem is employed to derive the energy identity in any water wave diffraction problem in a single-layer fluid for free-surface boundary condition with higher-order derivatives. For a two-layer fluid with free-surface boundary condition involving higher-order derivatives, two forms of energy identities involving transmission and reflection coefficients for any wave diffraction problem are also derived here by the same method. Based on this modified Green's theorem, hydrodynamic relations such as the energy-conservation principle and modified Haskind–Hanaoka relation are derived for radiation and diffraction problems in a single as well as two-layer fluid.
Resumo:
Sormen koukistajajännevamman korjauksen jälkeisen aktiivisen mobilisaation on todettu johtavan parempaan toiminnalliseen lopputulokseen kuin nykyisin yleisesti käytetyn dynaamisen mobilisaation. Aktiivisen mobilisaation ongelma on jännekorjauksen pettämisriskin lisääntyminen nykyisten ommeltekniikoiden riittämättömän vahvuuden vuoksi. Jännekorjauksen lujuutta on parannettu kehittämällä monisäieommeltekniikoita, joissa jänteeseen tehdään useita rinnakkaisia ydinompeleita. Niiden kliinistä käyttöä rajoittaa kuitenkin monimutkainen ja aikaa vievä tekninen suoritus. Käden koukistajajännekorjauksessa käytetään yleisesti sulamattomia ommelmateriaaleja. Nykyiset käytössä olevat biohajoavat langat heikkenevät liian nopeasti jänteen paranemiseen nähden. Biohajoavan laktidistereokopolymeeri (PLDLA) 96/4 – langan vetolujuuden puoliintumisajan sekä kudosominaisuuksien on aiemmin todettu soveltuvan koukistajajännekorjaukseen. Tutkimuksen tavoitteena oli kehittää välittömän aktiivisen mobilisaation kestävä ja toteutukseltaan yksinkertainen käden koukistajajännekorjausmenetelmä biohajoavaa PLDLA 96/4 –materiaalia käyttäen. Tutkimuksessa analysoitiin viiden eri yleisesti käytetyn koukistajajänneompeleen biomekaanisia ominaisuuksia staattisessa vetolujuustestauksessa ydinompeleen rakenteellisten ominaisuuksien – 1) säikeiden (lankojen) lukumäärän, 2) langan paksuuden ja 3) ompeleen konfiguraation – vaikutuksen selvittämiseksi jännekorjauksen pettämiseen ja vahvuuteen. Jännekorjausten näkyvän avautumisen todettiin alkavan perifeerisen ompeleen pettäessä voima-venymäkäyrän myötöpisteessä. Ydinompeleen lankojen lukumäärän lisääminen paransi ompeleen pitokykyä jänteessä ja suurensi korjauksen myötövoimaa. Sen sijaan paksumman (vahvemman) langan käyttäminen tai ompeleen konfiguraatio eivät vaikuttaneet myötövoimaan. Tulosten perusteella tutkittiin mahdollisuuksia lisätä ompeleen pitokykyä jänteestä yksinkertaisella monisäieompeleella, jossa ydinommel tehtiin kolmen säikeen polyesterilangalla tai nauhamaisen rakenteen omaavalla kolmen säikeen polyesterilangalla. Nauhamainen rakenne lisäsi merkitsevästi ompeleen pitokykyä jänteessä parantaen myötövoimaa sekä maksimivoimaa. Korjauksen vahvuus ylitti aktiivisen mobilisaation jännekorjaukseen kohdistaman kuormitustason. PLDLA 96/4 –langan soveltuvuutta koukistajajännekorjaukseen selvitettiin tutkimalla langan biomekaanisia ominaisuuksia ja solmujen pito-ominaisuuksia staattisessa vetolujuustestauksessa verrattuna yleisimmin jännekorjauksessa käytettävään punottuun polyesterilankaan (Ticron®). PLDLA –langan todettiin soveltuvan hyvin koukistajajännekorjaukseen, sillä se on polyesterilankaa venymättömämpi ja solmujen pitävyys on parempi. Viimeisessä vaiheessa tutkittiin PLDLA 96/4 –langasta valmistetulla kolmisäikeisellä, nauhamaisella jännekorjausvälineellä tehdyn jännekorjauksen kestävyyttä staattisessa vetolujuustestauksessa sekä syklisessä kuormituksessa, joka simuloi staattista testausta paremmin mobilisaation toistuvaa kuormitusta. PLDLA-korjauksen vahvuus ylitti sekä staattisessa että syklisessä kuormituksessa aktiivisen mobilisaation edellyttämän vahvuuden. Nauhamaista litteää ommelmateriaalia ei aiemmin ole tutkittu tai käytetty käden koukistajajännekorjauksessa. Tässä tutkimuksessa ommelmateriaalin nauhamainen rakenne paransi merkitsevästi jännekorjauksen vahvuutta, minkä arvioidaan johtuvan lisääntyneestä kontaktipinnasta jänteen ja ommelmateriaalin välillä estäen ompeleen läpileikkautumista jänteessä. Tutkimuksessa biohajoavasta PLDLA –materiaalista valmistetulla rakenteeltaan nauhamaisella kolmisäikeisellä langalla tehdyn jännekorjauksen vahvuus saavutti aktiivisen mobilisaation edellyttämän tason. Lisäksi uusi menetelmä on helppokäyttöinen ja sillä vältetään perinteisten monisäieompeleiden tekniseen suoritukseen liittyvät ongelmat.
Resumo:
Purpose: The aim of the present study was to develop and test new digital imaging equipment and methods for diagnosis and follow-up of ocular diseases. Methods: The whole material comprised 398 subjects (469 examined eyes), including 241 patients with melanocytic choroidal tumours, 56 patients with melanocytic iris tumours, 42 patients with diabetes, a 52-year old patient with chronic phase of VKH disease, a 30-year old patient with an old blunt eye injury, and 57 normal healthy subjects. Digital 50° (Topcon TRC 50 IA) and 45° (Canon CR6-45NM) fundus cameras, a new handheld digital colour videocamera for eye examinations (MediTell), a new subtraction method using the Topcon Image Net Program (Topcon corporation, Tokyo, Japan), a new method for digital IRT imaging of the iris we developed, and Zeiss photoslitlamp with a digital camera body were used for digital imaging. Results: Digital 50° red-free imaging had a sensitivity of 97.7% and two-field 45° and 50° colour imaging a sensitivity of 88.9-94%. The specificity of the digital 45°-50° imaging modalities was 98.9-100% versus the reference standard and ungradeable images that were 1.2-1.6%. By using the handheld digital colour video camera only, the optic disc and central fundus located inside 20° from the fovea could be recorded with a sensitivity of 6.9% for detection of at least mild NPDR when compared with the reference standard. Comparative use of digital colour, red-free, and red light imaging showed 85.7% sensitivity, 99% specificity, and 98.2 % exact agreement versus the reference standard in differentiation of small choroidal melanoma from pseudomelanoma. The new subtraction method showed growth in four of 94 melanocytic tumours (4.3%) during a mean ±SD follow-up of 23 ± 11 months. The new digital IRT imaging of the iris showed the sphincter muscle and radial contraction folds of Schwalbe in the pupillary zone and radial structural folds of Schwalbe and circular contraction furrows in the ciliary zone of the iris. The 52-year-old patient with a chronic phase of VKH disease showed extensive atrophy and occasional pigment clumps in the iris stroma, detachment of the ciliary body with severe ocular hypotony, and shallow retinal detachment of the posterior pole in both eyes. Infrared transillumination imaging and fluorescein angiographic findings of the iris showed that IR translucence (p=0.53), complete masking of fluorescence (p=0.69), presence of disorganized vessels (p=0.32), and fluorescein leakage (p=1.0) at the site of the lesion did not differentiate an iris nevus from a melanoma. Conclusions: Digital 50° red-free and two-field 50° or 45° colour imaging were suitable for DR screening, whereas the handheld digital video camera did not fulfill the needs of DR screening. Comparative use of digital colour, red-free and red light imaging was a suitable method in the differentiation of small choroidal melanoma from different pseudomelanomas. The subtraction method may reveal early growth of the melanocytic choroidal tumours. Digital IRT imaging may be used to study changes of the stroma and posterior surface of the iris in various diseases of the uvea. It contributed to the revealment of iris atrophy and serous detachment of the ciliary body with ocular hypotony together with the shallow retinal detachment of the posterior pole as new findings of the chronic phase of VKH disease. Infrared translucence and angiographic findings are useful in differential diagnosis of melanocytic iris tumours, but they cannot be used to determine if the lesion is benign or malignant.
Resumo:
Free software is viewed as a revolutionary and subversive practice, and in particular has dealt a strong blow to the traditional conception of intellectual property law (although in its current form could be considered a 'hack' of IP rights). However, other (capitalist) areas of law have been swift to embrace free software, or at least incorporate it into its own tenets. One area in particular is that of competition (antitrust) law, which itself has long been in theoretical conflict with intellectual property, due to the restriction on competition inherent in the grant of ‘monopoly’ rights by copyrights, patents and trademarks. This contribution will examine how competition law has approached free software by examining instances in which courts have had to deal with such initiatives, for instance in the Oracle Sun Systems merger, and the implications that these decisions have on free software initiatives. The presence or absence of corporate involvement in initiatives will be an important factor in this investigation, with it being posited that true instances of ‘commons-based peer production’ can still subvert the capitalist system, including perplexing its laws beyond intellectual property.
Resumo:
In late 2010, the online nonprofit media organization WikiLeaks published classified documents detailing correspondence between the U.S. State Department and its diplomatic missions around the world, numbering around 250,000 cables. These diplomatic cables contained classified information with comments on world leaders, foreign states, and various international and domestic issues. Negative reactions to the publication of these cables came from both the U.S. political class (which was generally condemnatory of WikiLeaks, invoking national security concerns and the jeopardizing of U.S. interests abroad) and the corporate world, with various companies ceasing to continue to provide services to WikiLeaks despite no legal measure (e.g., a court injunction) forcing them to do so. This article focuses on the legal remedies available to WikiLeaks against this corporate suppression of its speech in the U.S. and Europe since these are the two principle arenas in which the actors concerned are operating. The transatlantic legal protection of free expression will be considered, yet, as will be explained in greater detail, the legal conception of this constitutional and fundamental right comes from a time when the state posed the greater threat to freedom. As a result, it is not generally enforceable against private, non-state entities interfering with speech and expression which is the case here. Other areas of law, namely antitrust/competition, contract and tort will then be examined to determine whether WikiLeaks and its partners can attempt to enforce their right indirectly through these other means. Finally, there will be some concluding thoughts about the implications of the corporate response to the WikiLeaks embassy cables leak for freedom of expression online.
Resumo:
In this work, we explore simultaneous geometry design and material selection for statically determinate trusses by posing it as a continuous optimization problem. The underlying principles of our approach are structural optimization and Ashby’s procedure for material selection from a database. For simplicity and ease of initial implementation, only static loads are considered in this work with the intent of maximum stiffness, minimum weight/cost, and safety against failure. Safety of tensile and compression members in the truss is treated differently to prevent yield and buckling failures, respectively. Geometry variables such as lengths and orientations of members are taken to be the design variables in an assumed layout. Areas of cross-section of the members are determined to satisfy the failure constraints in each member. Along the lines of Ashby’s material indices, a new design index is derived for trusses. The design index helps in choosing the most suitable material for any geometry of the truss. Using the design index, both the design space and the material database are searched simultaneously using gradient-based optimization algorithms. The important feature of our approach is that the formulated optimization problem is continuous, although the material selection from a database is an inherently discrete problem. A few illustrative examples are included. It is observed that the method is capable of determining the optimal topology in addition to optimal geometry when the assumed layout contains more links than are necessary for optimality.
Resumo:
Aurora kinases are essential for chromosomal segregation and cell division and thereby important for maintaining the proper genomic integrity. There are three classes of aurora kinases in humans: A, B, and C. Aurora kinase A is frequently overexpressed in various cancers. The link of the overexpression and tumorigenesis is yet to be understood. By employing virtual screening, we have found that anacardic acid, a pentadecane aliphatic chain containing hydroxylcarboxylic acid, from cashew nut shell liquid could be docked in Aurora kinases A and B. Remarkably, we found that anacardic acid could potently activate the Aurora kinase A mediated phosphorylation of histone H3, but at a similar concentration the activity of aurora kinase B remained unaffected in vitro. Mechanistically, anacardic acid induces the structural changes and also the autophosphorylation of the aurora kinase A to enhance the enzyme activity. This data thus indicate anacardic acid as the first small-molecule activator of Aurora kinase, which could be highly useful for probing the function of hyperactive (overexpressed) Aurora kinase A.
Resumo:
Fusion energy is a clean and safe solution for the intricate question of how to produce non-polluting and sustainable energy for the constantly growing population. The fusion process does not result in any harmful waste or green-house gases, since small amounts of helium is the only bi-product that is produced when using the hydrogen isotopes deuterium and tritium as fuel. Moreover, deuterium is abundant in seawater and tritium can be bred from lithium, a common metal in the Earth's crust, rendering the fuel reservoirs practically bottomless. Due to its enormous mass, the Sun has been able to utilize fusion as its main energy source ever since it was born. But here on Earth, we must find other means to achieve the same. Inertial fusion involving powerful lasers and thermonuclear fusion employing extreme temperatures are examples of successful methods. However, these have yet to produce more energy than they consume. In thermonuclear fusion, the fuel is held inside a tokamak, which is a doughnut-shaped chamber with strong magnets wrapped around it. Once the fuel is heated up, it is controlled with the help of these magnets, since the required temperatures (over 100 million degrees C) will separate the electrons from the nuclei, forming a plasma. Once the fusion reactions occur, excess binding energy is released as energetic neutrons, which are absorbed in water in order to produce steam that runs turbines. Keeping the power losses from the plasma low, thus allowing for a high number of reactions, is a challenge. Another challenge is related to the reactor materials, since the confinement of the plasma particles is not perfect, resulting in particle bombardment of the reactor walls and structures. Material erosion and activation as well as plasma contamination are expected. Adding to this, the high energy neutrons will cause radiation damage in the materials, causing, for instance, swelling and embrittlement. In this thesis, the behaviour of a material situated in a fusion reactor was studied using molecular dynamics simulations. Simulations of processes in the next generation fusion reactor ITER include the reactor materials beryllium, carbon and tungsten as well as the plasma hydrogen isotopes. This means that interaction models, {\it i.e. interatomic potentials}, for this complicated quaternary system are needed. The task of finding such potentials is nonetheless nearly at its end, since models for the beryllium-carbon-hydrogen interactions were constructed in this thesis and as a continuation of that work, a beryllium-tungsten model is under development. These potentials are combinable with the earlier tungsten-carbon-hydrogen ones. The potentials were used to explain the chemical sputtering of beryllium due to deuterium plasma exposure. During experiments, a large fraction of the sputtered beryllium atoms were observed to be released as BeD molecules, and the simulations identified the swift chemical sputtering mechanism, previously not believed to be important in metals, as the underlying mechanism. Radiation damage in the reactor structural materials vanadium, iron and iron chromium, as well as in the wall material tungsten and the mixed alloy tungsten carbide, was also studied in this thesis. Interatomic potentials for vanadium, tungsten and iron were modified to be better suited for simulating collision cascades that are formed during particle irradiation, and the potential features affecting the resulting primary damage were identified. Including the often neglected electronic effects in the simulations was also shown to have an impact on the damage. With proper tuning of the electron-phonon interaction strength, experimentally measured quantities related to ion-beam mixing in iron could be reproduced. The damage in tungsten carbide alloys showed elemental asymmetry, as the major part of the damage consisted of carbon defects. On the other hand, modelling the damage in the iron chromium alloy, essentially representing steel, showed that small additions of chromium do not noticeably affect the primary damage in iron. Since a complete assessment of the response of a material in a future full-scale fusion reactor is not achievable using only experimental techniques, molecular dynamics simulations are of vital help. This thesis has not only provided insight into complicated reactor processes and improved current methods, but also offered tools for further simulations. It is therefore an important step towards making fusion energy more than a future goal.