971 resultados para Fracture energy
Resumo:
In 2007 the National Framework for Energy Efficiency provided funding for the first survey of energy efficiency education across all Australian universities teaching engineering education. The survey asked the question, ‘What is the state of education for energy efficiency in Australian engineering education?’. There was an excellent response to the survey, with 48 course responses from lecturers across 27 universities from every state and territory in Australia, and 260 student responses from 18 courses across 8 universities from all 6 states. It is concluded from the survey findings that the state of education for energy efficiency in Australian engineering education is currently highly variable and ad hoc across universities and engineering disciplines.
Resumo:
The increasing integration of Renewable Energy Resources (RER) and the role of Electric Energy Storage (EES) in distribution systems has created interest in using energy management strategies. EES has become a suitable resource to manage energy consumption and generation in smart grid. Optimize scheduling of EES can also maximize retailer’s profit by introducing energy time-shift opportunities. This paper proposes a new strategy for scheduling EES in order to reduce the impact of electricity market price and load uncertainty on retailers’ profit. The proposed strategy optimizes the cost of purchasing energy with the objective of minimizing surplus energy cost in hedging contract. A case study is provided to demonstrate the impact of the proposed strategy on retailers’ financial benefit.
Resumo:
The development of Electric Energy Storage (EES) integrated with Renewable Energy Resources (RER) has increased use of optimum scheduling strategy in distribution systems. Optimum scheduling of EES can reduce cost of purchased energy by retailers while improve the reliability of customers in distribution system. This paper proposes an optimum scheduling strategy for EES and the evaluation of its impact on reliability of distribution system. Case study shows the impact of the proposed strategy on reliability indices of a distribution system.
Resumo:
Sustainability has become crucial for the energy industry as projects in this industry are extensively large and complex and have significant impacts on the environment, community and economy. It demands the energy industry to proactively incorporate sustainability ideas and commit to sustainable project development. This study aims to investigate how the Australian energy industry responds to sustainability requirements and in particular what indicators used to measure sustainability performance. To achieve this, content analysis of sustainability reports, vision statements and policy statements of Australian energy companies listed in the 2013 PLATTS Top 250 Global Energy Company Rankings and government reports relating to sustainability has been conducted. The findings show that the energy companies extensively discuss sustainability aspects within three dimensions, i.e. community, environment, and economy. Their primary goals in sustainability are supplying cleaner energy for future, and doing business in a way that improves outcomes for shareholders, employees, business partners and the communities. In particular, energy companies have valued the employees of the business as a one of the key area that needs to be considered. Furthermore, the energy industry has become increasingly aware of the importance of measuring sustainability performance to achieve sustainability goals. A number of sustainability indicators have been developed on the basis of the key themes beyond economic measures. It is envisaged that findings from this research will help stakeholders in the energy industry to adopt different indicators to evaluate and ultimately achieve sustainability performance.
Resumo:
In the 21st Century much of the world will experience untold wealth and prosperity that could not even be conceived only some three centuries before. However as with most, if not all, of the human civilisations, increases in prosperity have accumulated significant environmental impacts that threaten to result in environmentally induced economic decline. A key part of the world’s response to this challenge is to rapidly decarbonise economies around the world, with options to achieve 60-80 per cent improvements (i.e. in the order of Factor 5) in energy and water productivity now available and proven in every sector. Drawing upon the 2009 publication “Factor 5”, in this paper we discuss how to realise such large-scale improvements, involving complexity beyond technical and process innovation. We begin by considering the concept of greenhouse gas stabilisation trajectories that include reducing current greenhouse gas emissions to achieve a ‘peaking’ of global emissions, and subsequent ‘tailing’ of emissions to the desired endpoint in ‘decarbonising’ the economy. Temporal priorities given to peaking and tailing have significant implications for the mix of decarbonising solutions and the need for government and market assistance in causing them to be implemented, requiring careful consideration upfront. Within this context we refer to a number of examples of Factor 5 style opportunities for energy productivity and decarbonisation, and then discuss the need for critical economic contributions to take such success from examples to central mechanisms in decarbonizing the global economy.
Resumo:
This study estimates the environmental efficiency of international listed firms in 10 worldwide sectors from 2007 to 2013 by applying an order-m method, a non-parametric approach based on free disposal hull with subsampling bootstrapping. Using a conventional output of gross profit and two conventional inputs of labor and capital, this study examines the order-m environmental efficiency accounting for the presence of each of 10 undesirable inputs/outputs and measures the shadow prices of each undesirable input and output. The results show that there is greater potential for the reduction of undesirable inputs rather than bad outputs. On average, total energy, electricity, or water usage has the potential to be reduced by 50%. The median shadow prices of undesirable inputs, however, are much higher than the surveyed representative market prices. Approximately 10% of the firms in the sample appear to be potential sellers or production reducers in terms of undesirable inputs/outputs, which implies that the price of each item at the current level has little impact on most of the firms. Moreover, this study shows that the environmental, social, and governance activities of a firm do not considerably affect environmental efficiency.
Resumo:
High efficiency organic photovoltaic cells discussed in literature are normally restricted to devices fabricated on glass substrates. This is a consequence of the extreme brittleness and inflexibility of the commonly used transparent conductive oxide electrode, indium tin oxide (ITO). This shortcoming of ITO along with other concerns such as increasing scarcity of indium, migration of indium to organic layer, etc. makes it imperative to move away from ITO. Here we demonstrate a highly flexible Ag electrode that possesses low sheet resistances even in ultra-thin layers. It retains its conductivity under severe bending stresses where ITO fails completely. A P3HT:PCBM blend organic solar cell fabricated on this highly flexible electrode gives an efficiency of 2.3%.
Resumo:
Legal Context In the wake of the Copenhagen Accord 2009 and the Cancun Agreements 2010, a number of patent offices have introduced fast-track mechanisms to encourage patent applications in relation to clean technologies - such as those pertaining to hydrogen. However, patent offices will be under increasing pressure to ensure that the granted patents satisfy the requisite patent thresholds, as well as to identify and reject cases of fraud, hoaxes, scams, and swindles. Key Points This article examines the BlackLight litigation in the United States, the United Kingdom, and the European Patent Office, and considers how patent offices and courts deal with patent applications in respect of clean energy and perpetual motion machines. Practical Significance The capacity of patent offices to grant sound and reliable patents is critical to the credibility of the patent system, particularly in the context of the current focus upon promoting clean technologies.
Resumo:
Structural fire safety has become one of the key considerations in the design and maintenance of the built infrastructure. Conventionally the fire resistance rating of load bearing Light gauge Steel Frame (LSF) walls is determined based on the standard time-temperature curve given in ISO 834. Recent research has shown that the true fire resistance of building elements exposed to building fires can be less than their fire resistance ratings determined based on standard fire tests. It is questionable whether the standard time-temperature curve truly represents the fuel loads in modern buildings. Therefore an equivalent fire severity approach has been used in the past to obtain fire resistance rating. This is based on the performance of a structural member exposed to a realistic design fire curve in comparison to that of standard fire time-temperature curve. This paper presents the details of research undertaken to develop an energy based time equivalent approach to obtain the fire resistance ratings of LSF walls exposed to realistic design fire curves with respect to standard fire exposure. This approach relates to the amount of energy transferred to the member. The proposed method was used to predict the fire resistance ratings of single and double layer plasterboard lined and externally insulated LSF walls. The predicted fire ratings were compared with the results from finite element analyses and fire design rules for three different wall configurations exposed to both rapid and prolonged fires. The comparison shows that the proposed energy method can be used to obtain the fire resistance ratings of LSF walls in the case of prolonged fires.
Resumo:
Osteoporotic fracture is a major cause of morbidity and mortality worldwide. Low bone mineral density (BMD) is a major predisposing factor to fracture and is known to be highly heritable. Site-, gender-, and age-specific genetic effects on BMD are thought to be significant, but have largely not been considered in the design of genome-wide association studies (GWAS) of BMD to date. We report here a GWAS using a novel study design focusing on women of a specific age (postmenopausal women, age 55-85 years), with either extreme high or low hip BMD (age- and gender-adjusted BMD z-scores of +1.5 to +4.0, n = 1055, or -4.0 to -1.5, n = 900), with replication in cohorts of women drawn from the general population (n = 20,898). The study replicates 21 of 26 known BMD-associated genes. Additionally, we report suggestive association of a further six new genetic associations in or around the genes CLCN7, GALNT3, IBSP, LTBP3, RSPO3, and SOX4, with replication in two independent datasets. A novel mouse model with a loss-of-function mutation in GALNT3 is also reported, which has high bone mass, supporting the involvement of this gene in BMD determination. In addition to identifying further genes associated with BMD, this study confirms the efficiency of extreme-truncate selection designs for quantitative trait association studies. © 2011 Duncan et al.
Resumo:
We aimed to identify genetic variants associated with cortical bone thickness (CBT) and bone mineral density (BMD) by performing two separate genome-wide association study (GWAS) meta-analyses for CBT in 3 cohorts comprising 5,878 European subjects and for BMD in 5 cohorts comprising 5,672 individuals. We then assessed selected single-nucleotide polymorphisms (SNPs) for osteoporotic fracture in 2,023 cases and 3,740 controls. Association with CBT and forearm BMD was tested for ~2.5 million SNPs in each cohort separately, and results were meta-analyzed using fixed effect meta-analysis. We identified a missense SNP (Thr>Ile; rs2707466) located in the WNT16 gene (7q31), associated with CBT (effect size of -0.11 standard deviations [SD] per C allele, P = 6.2×10-9). This SNP, as well as another nonsynonymous SNP rs2908004 (Gly>Arg), also had genome-wide significant association with forearm BMD (-0.14 SD per C allele, P = 2.3×10-12, and -0.16 SD per G allele, P = 1.2×10-15, respectively). Four genome-wide significant SNPs arising from BMD meta-analysis were tested for association with forearm fracture. SNP rs7776725 in FAM3C, a gene adjacent to WNT16, was associated with a genome-wide significant increased risk of forearm fracture (OR = 1.33, P = 7.3×10-9), with genome-wide suggestive signals from the two missense variants in WNT16 (rs2908004: OR = 1.22, P = 4.9×10-6 and rs2707466: OR = 1.22, P = 7.2×10-6). We next generated a homozygous mouse with targeted disruption of Wnt16. Female Wnt16-/- mice had 27% (P<0.001) thinner cortical bones at the femur midshaft, and bone strength measures were reduced between 43%-61% (6.5×10-13<P<5.9×10-4) at both femur and tibia, compared with their wild-type littermates. Natural variation in humans and targeted disruption in mice demonstrate that WNT16 is an important determinant of CBT, BMD, bone strength, and risk of fracture. © 2012 Zheng et al.
Resumo:
Vertical windows are the most common and simplest method to introduce daylight to interior spaces of office buildings, while also providing a view and connection to the outside. However, high contrast ratios between windows and surrounding surfaces can cause visual discomfort for occupants and can negatively influence their health and productivity. Consequently, building occupants may try to adapt their working environment through closing blinds and turning on lights in order to improve indoor visual comfort. Such interventions defeat the purpose of daylight harvesting systems and can increase the forecast electric lighting consumption in buildings that include such systems. A simple strategy to prevent these problematic consequences is to reduce the luminance contrasts presented by the window wall by increasing the luminance of areas surrounding the window through the sparing use of energy-efficient supplementary lighting, such light emitting diodes (LEDs). This paper presents the result of a pilot study in typical office in Brisbane, Australia that tests the effectiveness of a supplementary LED lighting system. The study shows an improvement in the appraisal of the visual environment is achieved using the supplementary system, along with up to 88% reductions in luminance contrast at the window wall. Also observed is a 36% reduction in the likelihood of user interventions that would increase energy usage. These results are used as the basis of an annual energy simulation of the test office and indicate that supplementary systems could be used to save energy beyond what is typically realised in side lit office spaces.
Resumo:
This paper investigates communication protocols for relaying sensor data from animal tracking applications back to base stations. While Delay Tolerant Networks (DTNs) are well suited to such challenging environments, most existing protocols do not consider the available energy that is particularly important when tracking devices can harvest energy. This limits both the network lifetime and delivery probability in energy-constrained applications to the point when routing performance becomes worse than using no routing at all. Our work shows that substantial improvement in data yields can be achieved through simple yet efficient energy-aware strategies. Conceptually, there is need for balancing the energy spent on sensing, data mulling, and delivery of direct packets to destination. We use empirical traces collected in a flying fox (fruit bat) tracking project and show that simple threshold-based energy-aware strategies yield up to 20% higher delivery rates. Furthermore, these results generalize well for a wide range of operating conditions.
Resumo:
Since 2003, Mainland China has been promoting the public–private partnership (PPP) procurement model in the waste-to-energy incineration sector to reduce the waste burying rate and improve environmental quality. Five critical risk factors (CRFs) that affect the construction and operation of waste-to-energy incineration projects have been identified from real-life risk events of 14 PPP waste-to-energy incineration plants through content analysis. These risk factors are insufficient waste supply, disposal of non-licensed waste, environmental risk, payment risk, and lack of supporting infrastructure. A recently completed PPP waste-to-energy incineration plant, the Shanghai Tianma project, was investigated to learn from the effective management of CRFs. First-hand data about the Shanghai Tianma project was collected, with a focus on project negotiation and concession agreement. Lessons learned about risk management were acquired. This paper presents a detailed study of the contractual structure, risk sharing scheme, risk response measures to CRFs, and project transfer of a PPP project. The study results will provide governments with management implications to prepare equitable concession agreements and benefit private investors by effectively mitigating and managing risks in future PPP waste-to-energy incineration projects.
Resumo:
Abstract PURPOSE: Compensatory responses may attenuate the effectiveness of exercise training in weight management. The aim of this study was to compare the effect of moderate- and high-intensity interval training on eating behavior compensation. METHODS: Using a crossover design, 10 overweight and obese men participated in 4-week moderate (MIIT) and high (HIIT) intensity interval training. MIIT consisted of 5-min cycling stages at ± 20% of mechanical work at 45%VO(2)peak, and HIIT consisted of alternate 30-s work at 90%VO(2)peak and 30-s rests, for 30 to 45 min. Assessments included a constant-load exercise test at 45%VO(2)peak for 45 min followed by 60-min recovery. Appetite sensations were measured during the exercise test using a Visual Analog Scale. Food preferences (liking and wanting) were assessed using a computer-based paradigm, and this paradigm uses 20 photographic food stimuli varying along two dimensions, fat (high or low) and taste (sweet or nonsweet). An ad libitum test meal was provided after the constant-load exercise test. RESULTS: Exercise-induced hunger and desire to eat decreased after HIIT, and the difference between MIIT and HIIT in desire to eat approached significance (p = .07). Exercise-induced liking for high-fat nonsweet food tended to increase after MIIT and decreased after HIIT (p = .09). Fat intake decreased by 16% after HIIT, and increased by 38% after MIIT, with the difference between MIIT and HIIT approaching significance (p = .07). CONCLUSIONS: This study provides evidence that energy intake compensation differs between MIIT and HIIT.