976 resultados para Food processing
Resumo:
Background: Food portion size estimation involves a complex mental process that may influence food consumption evaluation. Knowing the variables that influence this process can improve the accuracy of dietary assessment. The present study aimed to evaluate the ability of nutrition students to estimate food portions in usual meals and relate food energy content with errors in food portion size estimation. Methods: Seventy-eight nutrition students, who had already studied food energy content, participated in this cross-sectional study on the estimation of food portions, organised into four meals. The participants estimated the quantity of each food, in grams or millilitres, with the food in view. Estimation errors were quantified, and their magnitude were evaluated. Estimated quantities (EQ) lower than 90% and higher than 110% of the weighed quantity (WQ) were considered to represent underestimation and overestimation, respectively. Correlation between food energy content and error on estimation was analysed by the Spearman correlation, and comparison between the mean EQ and WQ was accomplished by means of the Wilcoxon signed rank test (P < 0.05). Results: A low percentage of estimates (18.5%) were considered accurate (+/- 10% of the actual weight). The most frequently underestimated food items were cauliflower, lettuce, apple and papaya; the most often overestimated items were milk, margarine and sugar. A significant positive correlation between food energy density and estimation was found (r = 0.8166; P = 0.0002). Conclusions: The results obtained in the present study revealed a low percentage of acceptable estimations of food portion size by nutrition students, with trends toward overestimation of high-energy food items and underestimation of low-energy items.
Resumo:
The assessment of food intake is essential for the development of dietetic interventions. Accuracy is low when intake is assessed by questionnaires, the under-reporting of food intake being frequent. Most such studies, however, were performed in developed countries and there is little data about the older population of developing nations. This study aimed to verify the total energy expenditure (TEE) of independent older Brazilians living in an urban area, through the doubly labelled water (DLW) method and to compare it with the reported energy intake obtained through the application of a food frequency questionnaire (FFQ). Initially, 100 volunteers aged from 60 to 75 years had their body composition determined by dual-energy X-ray absorptiometry (DEXA). Five volunteers of each quartile of body fat percentage had their energy expenditure determined by DLW. The mean age of the subjects included in this phase of the study was 66.4 +/- 3.5 years, and ten of the subjects were men. The mean TEE was 2565 +/- 614 and 2154 +/- 339 kcal.day(-1) for men and women, respectively. The Physical Activity Level (PAL) was 1.58 +/- 0.31 and 1.52 +/- 0.22, respectively. Under-reporting of food intake was highly prevalent, with a mean percentage of reported intake in relation to measured TEE of -17.7%. Thus, under-reporting of food intake is highly prevalent among Brazilian independent older persons. The DLW method is an important tool in nutritional studies and its use is to be recommended in developing countries. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Cardoso CR, Provinciatto PR, Godoi DF, Ferreira BR, Teixeira G, Rossi MA, Cunha FQ, Silva JS. IL-4 regulates susceptibility to intestinal inflammation in murine food allergy. Am J Physiol Gastrointest Liver Physiol 296: G593-G600, 2009. First published January 8, 2009; doi:10.1152/ajpgi.90431.2008.-Allergies involve a state of immediate hypersensitivity to antigens, including food proteins. The mechanism underlying the initiation and development of allergic responses involves IL-4 that directly induces the differentiation of committed effector Th2 lymphocytes. Although it is clear that Th2 responses play a pivotal role in the development of allergic responses, it remains unclear which mechanisms are involved in the development of the intestinal damages observed in food allergy. Accordingly, this work aimed to study the role of Th2/IL-4-dependent responses in the development of food allergy and intestinal pathology. C57BL/6 wild-type (WT) and IL-4(-/-) mice were sensitized with peanut proteins, challenged with peanut seeds, and followed for the development of food allergy and intestinal inflammation. Results demonstrated that exposure to peanut seeds led to weight loss in WT but not in IL-4(-/-) mice that preserved gut integrity with no signs of mucosal inflammation. These animals presented increased levels of IgG2a in sera, suggesting a role for allergic antibodies in the pathogenesis of WT animals. Most importantly, results also showed that lack of IL-4 modulated gut mucosal response in food allergy through diminished expression of TNF-alpha mRNA, increased Th1 IFN-gamma, IL-12p40, regulatory cytokines, and Foxp3, demonstrating their relevance in the control of allergic inflammatory processes, especially in the intestine. Finally, this study highlighted some of the complex mechanisms involved in the pathogenesis of allergic responses to food antigens in the gut, thereby providing valuable tools for directing novel therapeutic or preventive strategies to the control of allergic enteropathy.
Resumo:
Background and purpose: Control of food intake is a complex behaviour which involves many interconnected brain structures. The present work assessed if the noradrenergic system in the lateral septum (LS) was involved in the feeding behaviour of rats. Experimental approach: In the first protocol, the food intake of rats was measured. Then non-food-deprived animals received either 100 nL of 21 nmol of noradrenaline or vehicle unilaterally in the LS 10 min after local 10 nmol of WB4101, an alpha(1)-adrenoceptor antagonist, or vehicle. In the second protocol, different doses of WB4101 (1, 10 or 20 nmol in 100 nL) were microinjected bilaterally into the LS of rats, deprived of food for 18 h and food intake was compared to that of satiated animals. Key results: One-sided microinjection of noradrenaline into the LS of normal-fed rats evoked food intake, compared with vehicle-injected control animals, which was significantly reduced by alpha(1)-adrenoceptor antagonism. In a further investigation, food intake was significantly higher in food-deprived animals, compared to satiated controls. Pretreatment of the LS with WB4101 reduced food intake in only food-deprived animals in a dose-related manner, suggesting that the LS noradrenergic system was involved in the control of food intake. Conclusion and implications: Activation by local microinjection of noradrenaline of alpha(1)-adrenoceptors in the LS evoked food intake behaviour in rats. In addition, blockade of the LS alpha(1)-adrenoceptors inhibited food intake in food-deprived animals, suggesting that the LS noradrenergic system modulated food intake behaviour and satiation.
Resumo:
Background Hypersensitivity or uncontrolled responses against dietary antigens can lead to inflammatory disorders like food allergy and current models reflect a variety of causes but do not reveal the detailed modulation of gut immunity in response to food antigens after breakdown in mucosal tolerance. Objective To develop and characterize a murine model for food-induced intestinal inflammation and to demonstrate the modulation of gut immune response by dietary allergenic antigens. Methods C57BL/6 mice were sensitized with peanut proteins, challenged with peanut seeds and their sera and gut segments were collected for subsequent analyses. Results Sensitization and challenged with peanut seeds led to alterations in gut architecture with inflammatory response characterized by oedema in lamina propria and cell infiltrate composed mainly by eosinophils, mast cells, phagocytes, natural killer and plasma cells, together with low percentage of gamma delta(+) and CD4(+)CD25(+)Foxp3(+) cells in Peyer`s patches. These animals also presented high levels of specific IgE and IgG1 in sera and modulation of mucosal immunity was mediated by increased expression of GATA-3, IL-4, IL-13 and TNF-alpha in contrast to low IFN-gamma in the gut. Conclusion A murine model for food-induced intestinal inflammation was characterized in which modulation of gut immunity occurs by peanut antigens in consequence of T-helper type 2 (Th2) allergic response and failure of regulatory mechanisms necessary for mucosa homeostasis, resembling food allergy. This work shed some light on the understanding of the pathogenesis of gastrointestinal disorders and intolerance in the gut and supports the development of therapies for food-related enteropathies like food allergy, focusing on gut-specific immune response.
Resumo:
The lateral part of intermediate layer of superior colliculus (SCI) is a critical substrate for successful predation by rats. Hunting-evoked expression of the activity marker Fos is concentrated in SCI while prey capture in rats with NMDA lesions in SCI is impaired. Particularly affected are rapid orienting and stereotyped sequences of actions associated with predation of fast moving prey. Such deficits are consistent with the view that the deep layers of SC are important for sensory guidance of movement. Although much of the relevant evidence involves visual control of movement, less is known about movement guidance by somatosensory input from vibrissae. Indeed, our impression is that prey contact with whiskers is a likely stimulus to trigger predation. Moreover, SCI receives whisker and orofacial somatosensory information directly from trigeminal complex, and indirectly from zona incerta, parvicelular reticular formation and somatosensory barrel cortex. To better understand sensory guidance of predation by vibrissal information we investigated prey capture by rats after whisker removal and the role of superior colliculus (SC) by comparing Fos expression after hunting with and without whiskers. Rats were allowed to hunt cockroaches, after which their whiskers were removed. Two days later they were allowed to hunt cockroaches again. Without whiskers the rats were less able to retain the cockroaches after capture and less able to pursue them in the event of the cockroach escaping. The predatory behaviour of rats with re-grown whiskers returned to normal. In parallel, Fos expression in SCI induced by predation was significantly reduced in whiskerless animals. We conclude that whiskers contribute to the efficiency of rat prey capture and that the loss of vibrissal input to SCI, as reflected by reduced Fos expression, could play a critical role in predatory deficits of whiskerless rats. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
The role of GABA in the central processing of complex auditory signals is not fully understood. We have studied the involvement of GABA(A)-mediated inhibition in the processing of birdsong, a learned vocal communication signal requiring intact hearing for its development and maintenance. We focused on caudomedial nidopallium (NCM), an area analogous to parts of the mammalian auditory cortex with selective responses to birdsong. We present evidence that GABA(A)-mediated inhibition plays a pronounced role in NCM`s auditory processing of birdsong. Using immunocytochemistry, we show that approximately half of NCM`s neurons are GABAergic. Whole cell patch-clamp recordings in a slice preparation demonstrate that, at rest, spontaneously active GABAergic synapses inhibit excitatory inputs onto NCM neurons via GABA(A) receptors. Multi-electrode electrophysiological recordings in awake birds show that local blockade of GABA(A)-mediated inhibition in NCM markedly affects the temporal pattern of song-evoked responses in NCM without modifications in frequency tuning. Surprisingly, this blockade increases the phasic and largely suppresses the tonic response component, reflecting dynamic relationships of inhibitory networks that could include disinhibition. Thus processing of learned natural communication sounds in songbirds, and possibly other vocal learners, may depend on complex interactions of inhibitory networks.
Resumo:
Cannabis sativa, the most widely used illicit drug, has profound effects on levels of anxiety in animals and humans. Although recent studies have helped provide a better understanding of the neurofunctional correlates of these effects, indicating the involvement of the amygdala and cingulate cortex, their reciprocal influence is still mostly unknown. In this study dynamic causal modelling (DCM) and Bayesian model selection (BMS) were used to explore the effects of pure compounds of C. sativa [600 mg of cannabidiol (CBD) and 10 mg Delta(9)-tetrahydrocannabinol (Delta(9)-THC)] on prefrontal-subcortical effective connectivity in 15 healthy subjects who underwent a double-blind randomized, placebo-controlled fMRI paradigm while viewing faces which elicited different levels of anxiety. In the placebo condition, BMS identified a model with driving inputs entering via the anterior cingulate and forward intrinsic connectivity between the amygdala and the anterior cingulate as the best fit. CBD but not Delta(9)-THC disrupted forward connectivity between these regions during the neural response to fearful faces. This is the first study to show that the disruption of prefrontal-subocrtical connectivity by CBD may represent neurophysiological correlates of its anxiolytic properties.
Resumo:
Functional brain imaging techniques such as functional MRI (fMRI) that allow the in vivo investigation of the human brain have been exponentially employed to address the neurophysiological substrates of emotional processing. Despite the growing number of fMRI studies in the field, when taken separately these individual imaging studies demonstrate contrasting findings and variable pictures, and are unable to definitively characterize the neural networks underlying each specific emotional condition. Different imaging packages, as well as the statistical approaches for image processing and analysis, probably have a detrimental role by increasing the heterogeneity of findings. In particular, it is unclear to what extent the observed neurofunctional response of the brain cortex during emotional processing depends on the fMRI package used in the analysis. In this pilot study, we performed a double analysis of an fMRI dataset using emotional faces. The Statistical Parametric Mapping (SPM) version 2.6 (Wellcome Department of Cognitive Neurology, London, UK) and the XBAM 3.4 (Brain Imaging Analysis Unit, Institute of Psychiatry, Kings College London, UK) programs, which use parametric and non-parametric analysis, respectively, were used to assess our results. Both packages revealed that processing of emotional faces was associated with an increased activation in the brain`s visual areas (occipital, fusiform and lingual gyri), in the cerebellum, in the parietal cortex, in the cingulate cortex (anterior and posterior cingulate), and in the dorsolateral and ventrolateral prefrontal cortex. However, blood oxygenation level-dependent (BOLD) response in the temporal regions, insula and putamen was evident in the XBAM analysis but not in the SPM analysis. Overall, SPM and XBAM analyses revealed comparable whole-group brain responses. Further Studies are needed to explore the between-group compatibility of the different imaging packages in other cognitive and emotional processing domains. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Several neuropsychiatry disorders have shown a sexual dimorphism in their incidence, symptom profile and therapeutic response. A better understanding of the impact of sex hormones in emotional processing sexual dimorphism could bring tight to this important clinical finding. Some studies have provided evidence of sex differences in the identification of emotional faces, however, results are inconsistent and such inconsistency could be related to the lack of experimental control of the sex hormone status of participants. More recently, a few studies evaluated the modulation of facial emotion recognition by the phase of the menstrual cycle and sex hormones, however, none of them directly compared these results with a group of men. We evaluated the accuracy of facial emotion recognition in 40 healthy volunteers. Eleven women were assigned to early follicular group, nine women to the ovulatory group and 10 women to luteal group, depending on the phase of menstrual cycle, and a group of 10 men were also evaluated. Estrogen, progesterone and testosterone levels were assessed. The performance of the groups in the identification of emotional faces varied depending on the emotion. Early follicular group were more accurate to perceive angry faces than all other groups. Sadness was more accurately recognized by early follicular group than by luteal group and regarding the recognition of fearful faces a trend to a better performance and a significantly higher accuracy was observed, respectively, in the early follicular group and in the ovulatory group, in comparison to men. In women, estrogen negatively correlated to the accuracy in perception of angry mate faces. Our results indicate sex hormones to be implicated in a sexual dimorphism in facial emotion recognition, and highlight the importance of estrogen specifically in the recognition of negative emotions such as sadness, anger and fear. (C) 2009 Elsevier Ltd. All rights reserved.