909 resultados para Extraction de donnée


Relevância:

20.00% 20.00%

Publicador:

Resumo:

La protéomique est un sujet d'intérêt puisque l'étude des fonctions et des structures de protéines est essentiel à la compréhension du fonctionnement d'un organisme donné. Ce projet se situe dans la catégorie des études structurales, ou plus précisément, la séquence primaire en acides aminés pour l’identification d’une protéine. La détermination des protéines commence par l'extraction d'un mélange protéique issu d'un tissu ou d'un fluide biologique pouvant contenir plus de 1000 protéines différentes. Ensuite, des techniques analytiques comme l’électrophorèse en gel polyacrylamide en deux dimensions (2D-SDS-PAGE), qui visent à séparer ce mélange en fonction du point isoélectrique et de la masse molaire des protéines, sont utilisées pour isoler les protéines et pour permettre leur identification par chromatographie liquide and spectrométrie de masse (MS), typiquement. Ce projet s'inspire de ce processus et propose que l'étape de fractionnement de l'extrait protéique avec la 2D-SDS-PAGE soit remplacé ou supporté par de multiples fractionnements en parallèle par électrophorèse capillaire (CE) quasi-multidimensionnelle. Les fractions obtenues, contenant une protéine seule ou un mélange de protéines moins complexe que l’extrait du départ, pourraient ensuite être soumises à des identifications de protéines par cartographie peptidique et cartographie protéique à l’aide des techniques de séparations analytiques et de la MS. Pour obtenir la carte peptidique d'un échantillon, il est nécessaire de procéder à la protéolyse enzymatique ou chimique des protéines purifiées et de séparer les fragments peptidiques issus de cette digestion. Les cartes peptidiques ainsi générées peuvent ensuite être comparées à des échantillons témoins ou les masses exactes des peptides enzymatiques sont soumises à des moteurs de recherche comme MASCOT™, ce qui permet l’identification des protéines en interrogeant les bases de données génomiques. Les avantages exploitables de la CE, par rapport à la 2D-SDS-PAGE, sont sa haute efficacité de séparation, sa rapidité d'analyse et sa facilité d'automatisation. L’un des défis à surmonter est la faible quantité de masse de protéines disponible après analyses en CE, due partiellement à l'adsorption des protéines sur la paroi du capillaire, mais due majoritairement au faible volume d'échantillon en CE. Pour augmenter ce volume, un capillaire de 75 µm était utilisé. Aussi, le volume de la fraction collectée était diminué de 1000 à 100 µL et les fractions étaient accumulées 10 fois; c’est-à-dire que 10 produits de séparations étaient contenu dans chaque fraction. D'un autre côté, l'adsorption de protéines se traduit par la variation de l'aire d'un pic et du temps de migration d'une protéine donnée ce qui influence la reproductibilité de la séparation, un aspect très important puisque 10 séparations cumulatives sont nécessaires pour la collecte de fractions. De nombreuses approches existent pour diminuer ce problème (e.g. les extrêmes de pH de l’électrolyte de fond, les revêtements dynamique ou permanent du capillaire, etc.), mais dans ce mémoire, les études de revêtement portaient sur le bromure de N,N-didodecyl-N,N-dimethylammonium (DDAB), un surfactant qui forme un revêtement semi-permanent sur la paroi du capillaire. La grande majorité du mémoire visait à obtenir une séparation reproductible d'un mélange protéique standard préparé en laboratoire (contenant l’albumine de sérum de bovin, l'anhydrase carbonique, l’α-lactalbumine et la β-lactoglobulin) par CE avec le revêtement DDAB. Les études portées sur le revêtement montraient qu'il était nécessaire de régénérer le revêtement entre chaque injection du mélange de protéines dans les conditions étudiées : la collecte de 5 fractions de 6 min chacune à travers une séparation de 30 min, suivant le processus de régénération du DDAB, et tout ça répété 10 fois. Cependant, l’analyse en CE-UV et en HPLC-MS des fractions collectées ne montraient pas les protéines attendues puisqu'elles semblaient être en-dessous de la limite de détection. De plus, une analyse en MS montrait que le DDAB s’accumule dans les fractions collectées dû à sa désorption de la paroi du capillaire. Pour confirmer que les efforts pour recueillir une quantité de masse de protéine étaient suffisants, la méthode de CE avec détection par fluorescence induite par laser (CE-LIF) était utilisée pour séparer et collecter la protéine, albumine marquée de fluorescéine isothiocyanate (FITC), sans l'utilisation du revêtement DDAB. Ces analyses montraient que l'albumine-FITC était, en fait, présente dans la fraction collecté. La cartographie peptidique a été ensuite réalisée avec succès en employant l’enzyme chymotrypsine pour la digestion et CE-LIF pour obtenir la carte peptidique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ce mémoire s'intéresse à la détection de mouvement dans une séquence d'images acquises à l'aide d'une caméra fixe. Dans ce problème, la difficulté vient du fait que les mouvements récurrents ou non significatifs de la scène tels que les oscillations d'une branche, l'ombre d'un objet ou les remous d'une surface d'eau doivent être ignorés et classés comme appartenant aux régions statiques de la scène. La plupart des méthodes de détection de mouvement utilisées à ce jour reposent en fait sur le principe bas-niveau de la modélisation puis la soustraction de l'arrière-plan. Ces méthodes sont simples et rapides mais aussi limitées dans les cas où l'arrière-plan est complexe ou bruité (neige, pluie, ombres, etc.). Cette recherche consiste à proposer une technique d'amélioration de ces algorithmes dont l'idée principale est d'exploiter et mimer deux caractéristiques essentielles du système de vision humain. Pour assurer une vision nette de l’objet (qu’il soit fixe ou mobile) puis l'analyser et l'identifier, l'œil ne parcourt pas la scène de façon continue, mais opère par une série de ``balayages'' ou de saccades autour (des points caractéristiques) de l'objet en question. Pour chaque fixation pendant laquelle l'œil reste relativement immobile, l'image est projetée au niveau de la rétine puis interprétée en coordonnées log polaires dont le centre est l'endroit fixé par l'oeil. Les traitements bas-niveau de détection de mouvement doivent donc s'opérer sur cette image transformée qui est centrée pour un point (de vue) particulier de la scène. L'étape suivante (intégration trans-saccadique du Système Visuel Humain (SVH)) consiste ensuite à combiner ces détections de mouvement obtenues pour les différents centres de cette transformée pour fusionner les différentes interprétations visuelles obtenues selon ses différents points de vue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Present work is aimed at development of an appropriate microbial technology for protection of larvae of macrobrachium rosenbergii from disease and to increase survival rate in hatcheries. Application of immunostimulants to activate the immune system of cultured animals against pathogen is the widely accepted alternative to antibiotics in aquaculture. The most important immunostimulant is glucan. Therefore a research programme entitled as extraction of glucan from Acremonium diospyri and its application in macrobrachium rosenbergii larval rearing system along with bacterians as microspheres. The main objectives of the study are development of aquaculture grade glucan from acremonium diospyri, microencapsulated drug delivery system for the larvae of M. rosenbergii and microencapsulated glucan with bacterian preparation for the enhanced production of M. rosenbergii in larval rearing system. Based on the results of field trials microencapsulated glucan with bacterin preparation, it is concluded that the microencapsulated preparation at a concentration of 25g per million larvae once in seven days will enhance the production and quality seed of M. rosenbergii.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis entitled “ Investigations on the solvent extraction and luminescence of lanthanoids with mixtures of heterocyclic β-diketone S and various neutral oxo-donors” embodies the results of investigations carried out on the solvent extraction of trivalent lanthanoids with various heterocyclic β-diketones in the presence and absence of neutral oxo-donors and also on the luminescent studies of Eu3+-heterocyclic β-diketonate complexes with Lewis bases. The primary objective of the present work is to generate the knowledge base, especially to understand the interactions of lanthanoid-heterocyclic β-diketonates with various macrocyclic ligands such as crown ethers and neutral organophosphorus extractants , with a view to achieve better selectivity. The secondary objective of this thesis is to develop novel lanthanoid luminescent materials based on 3-phenyl-4-aroyl-5-isoxazolones and organophosphorus ligands, for use in electroluminescent devices. In the beginning it describes the need for the development of new mixed-ligand systems for the separation of lanthanoids and the development and importance of novel luminescent lanthanoid- β-diketonate complexes for display devices. The syntheses of various para substituted derivatives of 4-aroyl-5-isoxazolones and their characterization by various spectroscopic techniques are described. It also investigate the solvent extraction behaviour of trivalent lanthanoids with 4-aroyl-5-isoxazolones in the presence and absence of various crown ethers such as 18C6, DC18C6, DB18C6 and B18C6. Elemental analysis, IR and H NMR spectral studies are used to understand the interactions of crown ethers with 4-aroyl-5-isoxazolonate complexes of lanthanoids. The synergistic extraction of trivalent lanthanoids with sterically hindered 1-phenyl-3-methyl-4-pivaloyl-5-pyrazolone in the presence of various structurally related crown ethers are studied. The syntheses, characterization and photyphysical properties of Eu3+-4-aroyl-5-isoxazolonate complexes in the presence of Lewis bases like trictylphosphine oxide or triphenylphosphine oxide were studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis entitled “Synergistic solvent extraction of Thorium(IV) and Uranium(VI) with β-diketones in presence of oxo-donors” embodies the results of the investigations carried out on the extraction of thorium(IV) an uranium(VI) with heterocyclic β-diketones in the presence and absence of various macrocyclic ligands and neutral organophosphorus extractants. The objective of this work is to generate the knowledge base to achieve better selectivity between thorium(IV) and uranium(VI) by understanding the interactions of crown ethers or neutral organophosphorus extractants with metal-heterocyclic β-diketonate complexes. Para-substituted 1-phenyl-3-methyl-4-aroyl-5-pyrazolones, namely,1-phenyl-3-methyl-4-(4-fluorobenzoyl)-5-pyrazolone (HPMFBP) and 1-phenyl-3-methyl-4-(4-toluoyl)-5-pyrazolone (HPMTP) were synthesized and characterized by elemental analysis, IR and H NMR spectral data. The synthesized ligands have been utilized for the extraction of thorium(IV) and uranium(VI) from nitric acid solutions in the presence and absence of various crown ethers. Thorium(IV) and uranium(VI) complexes with HPMPP(1-Phenyl-3-methyl-4-pivaloyl-5-pyrazolone) and neutral organophosphorus extractants were synthesized and characterized by IR and P NMR spectral data to further understand the interactions of neutral organophosphorus extractants with metal-chelates. Solid complexes of thorium(IV) and uranium(VI) with para-substituted 4-aroyl-5-isoxazolones and crown ethers were isolated and characterized by various spectroscopic techniques to further clarify the nature of the extracted complexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid phase extraction (SPE) is a powerful technique for preconcentration/removal or separation of trace and ultra trace amounts of toxic and nutrient elements. SPE effectively simplifies the labour intensive sample preparation, increase its reliability and eliminate the clean up step by using more selective extraction procedures. The synthesis of sorbents with a simplified procedure and diminution of the risks of errors shows the interest in the areas of environmental monitoring, geochemical exploration, food, agricultural, pharmaceutical, biochemical industry and high purity metal designing, etc. There is no universal SPE method because the sample pretreatment depends strongly on the analytical demand. But there is always an increasing demand for more sensitive, selective, rapid and reliable analytical procedures. Among the various materials, chelate modified naphthalene, activated carbon and chelate functionalized highly cross linked polymers are most important. In the biological and environmental field, large numbers of samples are to be analysed within a short span of time. Hence, online flow injection methods are preferred as they allow extraction, separation, identification and quantification of many numbers of analytes. The flow injection online preconcentration flame AAS procedure developed allows the determination of as low as 0.1 µg/l of nickel in soil and cobalt in human hair samples. The developed procedure is precise and rapid and allows the analysis of 30 samples per hour with a loading time of 60 s. The online FI manifold used in the present study permits high sampling, loading rates and thus resulting in higher preconcentration/enrichment factors of -725 and 600 for cobalt and nickel respectively with a 1 min preconcentration time compared to conventional FAAS signal. These enrichment factors are far superior to hitherto developed on line preconcentration procedures for inorganics. The instrumentation adopted in the present study allows much simpler equipment and low maintenance costs compared to costlier ICP-AES or ICP-MS instruments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The standard models for statistical signal extraction assume that the signal and noise are generated by linear Gaussian processes. The optimum filter weights for those models are derived using the method of minimum mean square error. In the present work we study the properties of signal extraction models under the assumption that signal/noise are generated by symmetric stable processes. The optimum filter is obtained by the method of minimum dispersion. The performance of the new filter is compared with their Gaussian counterparts by simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Faculty of Marine Sciences,Cochin University of Science and Technology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic Resonance Imaging (MRI) is a multi sequence medical imaging technique in which stacks of images are acquired with different tissue contrasts. Simultaneous observation and quantitative analysis of normal brain tissues and small abnormalities from these large numbers of different sequences is a great challenge in clinical applications. Multispectral MRI analysis can simplify the job considerably by combining unlimited number of available co-registered sequences in a single suite. However, poor performance of the multispectral system with conventional image classification and segmentation methods makes it inappropriate for clinical analysis. Recent works in multispectral brain MRI analysis attempted to resolve this issue by improved feature extraction approaches, such as transform based methods, fuzzy approaches, algebraic techniques and so forth. Transform based feature extraction methods like Independent Component Analysis (ICA) and its extensions have been effectively used in recent studies to improve the performance of multispectral brain MRI analysis. However, these global transforms were found to be inefficient and inconsistent in identifying less frequently occurred features like small lesions, from large amount of MR data. The present thesis focuses on the improvement in ICA based feature extraction techniques to enhance the performance of multispectral brain MRI analysis. Methods using spectral clustering and wavelet transforms are proposed to resolve the inefficiency of ICA in identifying small abnormalities, and problems due to ICA over-completeness. Effectiveness of the new methods in brain tissue classification and segmentation is confirmed by a detailed quantitative and qualitative analysis with synthetic and clinical, normal and abnormal, data. In comparison to conventional classification techniques, proposed algorithms provide better performance in classification of normal brain tissues and significant small abnormalities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Speech signals are one of the most important means of communication among the human beings. In this paper, a comparative study of two feature extraction techniques are carried out for recognizing speaker independent spoken isolated words. First one is a hybrid approach with Linear Predictive Coding (LPC) and Artificial Neural Networks (ANN) and the second method uses a combination of Wavelet Packet Decomposition (WPD) and Artificial Neural Networks. Voice signals are sampled directly from the microphone and then they are processed using these two techniques for extracting the features. Words from Malayalam, one of the four major Dravidian languages of southern India are chosen for recognition. Training, testing and pattern recognition are performed using Artificial Neural Networks. Back propagation method is used to train the ANN. The proposed method is implemented for 50 speakers uttering 20 isolated words each. Both the methods produce good recognition accuracy. But Wavelet Packet Decomposition is found to be more suitable for recognizing speech because of its multi-resolution characteristics and efficient time frequency localizations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Speech processing and consequent recognition are important areas of Digital Signal Processing since speech allows people to communicate more natu-rally and efficiently. In this work, a speech recognition system is developed for re-cognizing digits in Malayalam. For recognizing speech, features are to be ex-tracted from speech and hence feature extraction method plays an important role in speech recognition. Here, front end processing for extracting the features is per-formed using two wavelet based methods namely Discrete Wavelet Transforms (DWT) and Wavelet Packet Decomposition (WPD). Naive Bayes classifier is used for classification purpose. After classification using Naive Bayes classifier, DWT produced a recognition accuracy of 83.5% and WPD produced an accuracy of 80.7%. This paper is intended to devise a new feature extraction method which produces improvements in the recognition accuracy. So, a new method called Dis-crete Wavelet Packet Decomposition (DWPD) is introduced which utilizes the hy-brid features of both DWT and WPD. The performance of this new approach is evaluated and it produced an improved recognition accuracy of 86.2% along with Naive Bayes classifier.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Speech is a natural mode of communication for people and speech recognition is an intensive area of research due to its versatile applications. This paper presents a comparative study of various feature extraction methods based on wavelets for recognizing isolated spoken words. Isolated words from Malayalam, one of the four major Dravidian languages of southern India are chosen for recognition. This work includes two speech recognition methods. First one is a hybrid approach with Discrete Wavelet Transforms and Artificial Neural Networks and the second method uses a combination of Wavelet Packet Decomposition and Artificial Neural Networks. Features are extracted by using Discrete Wavelet Transforms (DWT) and Wavelet Packet Decomposition (WPD). Training, testing and pattern recognition are performed using Artificial Neural Networks (ANN). The proposed method is implemented for 50 speakers uttering 20 isolated words each. The experimental results obtained show the efficiency of these techniques in recognizing speech