719 resultados para Engineering laboratories
Resumo:
Somatic cell nuclear transfer (SCNT) has had an enormous impact on our understanding of biology and remains a unique tool for multiplying valuable laboratory and domestic animals. However, the complexity of the procedure and its poor efficiency are factors that limit a wider application of SCNT. In this context, oocyte meiotic arrest is an important option to make SCNT more flexible and increase the number of cloned embryos produced. Herein, we show that the use of butyrolactone I in association with brain-derived neurotrophic factor (BDNF) to arrest the meiotic division for 24 h prior to in vitro maturation provides bovine (Bos indicus) oocytes capable of supporting development of blastocysts and full-term cloned calves at least as efficiently as nonarrested oocytes. Furthermore, the procedure resulted in cloned blastocysts with an 1.5- and twofold increase of POU5F1 and IFNT2 expression, respectively, which are well-known markers of embryonic viability. Mitochondrial DNA (mtDNA) copy number was diminished by prematuration in immature oocytes (718,585 +/- 34,775 vs. 595,579 +/- 31,922, respectively, control and treated groups) but was unchanged in mature oocytes (522,179 +/- 45,617 vs. 498,771 +/- 33,231) and blastocysts (816,627 +/- 40,235 vs. 765,332 +/- 51,104). To our knowledge, this is the first report of cloned offspring born to prematured oocytes, indicating that meiotic arrest could have significant implications for laboratories working with SCNT and in vitro embryo production.
Resumo:
Document engineering is the computer science discipline that investigates systems for documents in any form and in all media. As with the relationship between software engineering and software, document engineering is concerned with principles, tools and processes that improve our ability to create, manage, and maintain documents (http://www.documentengineering.org). The ACM Symposium on Document Engineering is an annual meeting of researchers active in document engineering: it is sponsored by ACM by means of the ACM SIGWEB Special Interest Group. In this editorial, we first point to work carried out in the context of document engineering, which are directly related to multimedia tools and applications. We conclude with a summary of the papers presented in this special issue.
Resumo:
Reusable and evolvable Software Engineering Environments (SEES) are essential to software production and have increasingly become a need. In another perspective, software architectures and reference architectures have played a significant role in determining the success of software systems. In this paper we present a reference architecture for SEEs, named RefASSET, which is based on concepts coming from the aspect-oriented approach. This architecture is specialized to the software testing domain and the development of tools for that domain is discussed. This and other case studies have pointed out that the use of aspects in RefASSET provides a better Separation of Concerns, resulting in reusable and evolvable SEEs. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The TCABR data analysis and acquisition system has been upgraded to support a joint research programme using remote participation technologies. The architecture of the new system uses Java language as programming environment. Since application parameters and hardware in a joint experiment are complex with a large variability of components, requirements and specification solutions need to be flexible and modular, independent from operating system and computer architecture. To describe and organize the information on all the components and the connections among them, systems are developed using the extensible Markup Language (XML) technology. The communication between clients and servers uses remote procedure call (RPC) based on the XML (RPC-XML technology). The integration among Java language, XML and RPC-XML technologies allows to develop easily a standard data and communication access layer between users and laboratories using common software libraries and Web application. The libraries allow data retrieval using the same methods for all user laboratories in the joint collaboration, and the Web application allows a simple graphical user interface (GUI) access. The TCABR tokamak team in collaboration with the IPFN (Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa) is implementing this remote participation technologies. The first version was tested at the Joint Experiment on TCABR (TCABRJE), a Host Laboratory Experiment, organized in cooperation with the IAEA (International Atomic Energy Agency) in the framework of the IAEA Coordinated Research Project (CRP) on ""Joint Research Using Small Tokamaks"". (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We performed a first-principles investigation on the structural, electronic and optical properties of crystals made of chemically functionalized adamantane molecules. Several molecular building blocks, formed by boron and nitrogen substitutional functionalizations, were considered to build zinc blende and wurtzite crystals, and the resulting structures presented large bulk moduli and cohesive energies, wide and direct bandgaps, and low dielectric constants (low-kappa materials). Those properties provide stability for such structures up to room temperature, superior to those of typical molecular crystals. This indicates a possible road map for crystal engineering using functionalized diamondoids, with potential applications ranging from space filling between conducting wires in nanodevices to nano-electromechanical systems.
Resumo:
Lateral ordering of InGaAs quantum dots on the GaAs (001) surface has been achieved in earlier reports, resembling an anisotropic pattern. In this work, we present a method of breaking the anisotropy of ordered quantum dots (QDs) by changing the growth environment. We show experimentally that using As(2) molecules instead of As(4) as a background flux is efficient in controlling the diffusion of distant Ga adatoms to make it possible to produce isotropic ordering of InGaAs QDs over GaAs (001). The control of the lateral ordering of QDs under As(2) flux has enabled us to improve their optical properties. Our results are consistent with reported experimental and theoretical data for structure and diffusion on the GaAs surface.
Resumo:
Electrospun polyaniline nanofibers are one of the most promising materials for cardiac tissue engineering due to their tunable electroactive properties. Moreover, the biocompatibility of polyaniline nanofibes can be improved by grafting of adhesive peptides during the synthesis. In this paper, we describe the biocompatible properties and cardiomyocytes proliferation on polyaniline electrospun nanofibers modified by hyperbranched poly-L-lysine dendrimers (HPLys). The microstructure characterization of the HPLys/polyaniline nanofibers was carried out by scanning electron microscopy (SEM). It was observed that the application of electrical current stimulates the differentiation of cardiac cells cultured on the nanofiber scaffolds. Both electroactivity and biocompatibility of the HPLys based nanofibers suggest the use this material for culture of cardiac cells and opens the possibility of using this material as a biocompatible electroactive 3-D matrix in cardiac tissue engineering.
Resumo:
A rational strategy was employed for design of an orthorhombic structure of lamivudine with maleic acid. On the basis of the lamivudine saccharinate structure reported in the literature, maleic acid was chosen to synthesize a salt with the anti-HIV drug because of the structural similarities between the salt formers. Maleic acid has an acid-ionization constant of the anti first proton and an arrangement of their hydrogen bonding functionalities similar to those of saccharin. Likewise, there is a saccharin-like conformational rigidity in maleic acid because of the hydrogen-bonded ring formation and the Z-configuration around the C=C double bond. As was conceivably predicted, lamivudine maleate assembles into a structure whose intermolecular architecture is related to that of saccharinate salt of the drug. Therefore, a molecular framework responsible for crystal assembly into a lamivudine saccharinate-like structure could be recognized in the salt formers. Furthermore, structural correlations and structure-solubility relationships were established for lamivudine maleate and saccharinate. Although there is a same molecular framework in maleic acid and saccharin, these salt formers are Structurally different in some aspects. When compared to saccharin, neither out-of-plane SO(2) oxygens nor a benzene group occur in maleic acid. Both features could be related to higher solubility of lamivudine maleate. Here, we also anticipate that multicomponent molecular crystals of lamivudine with other salt formers possessing the molecular framework responsible for crystal assembly can be engineered successfully.
Resumo:
The work presented here demonstrates the feasibility of using the single-mode fibers of an optical Internet network to deliver visible light between separate laboratories as a way to perform remote spectroscopy in the visible for teaching purposes. The coupling of a broadband light source into the single-mode fiber (SMF) and the characterization of optical losses as a function of the wavelength are discussed. Sample spectra were measured with a portable spectrometer controlled by an acquisition program developed with the LabVIEW software that allows the data to be collected and analyzed.
Resumo:
The InteGrade middleware intends to exploit the idle time of computing resources in computer laboratories. In this work we investigate the performance of running parallel applications with communication among processors on the InteGrade grid. As costly communication on a grid can be prohibitive, we explore the so-called systolic or wavefront paradigm to design the parallel algorithms in which no global communication is used. To evaluate the InteGrade middleware we considered three parallel algorithms that solve the matrix chain product problem, the 0-1 Knapsack Problem, and the local sequence alignment problem, respectively. We show that these three applications running under the InteGrade middleware and MPI take slightly more time than the same applications running on a cluster with only LAM-MPI support. The results can be considered promising and the time difference between the two is not substantial. The overhead of the InteGrade middleware is acceptable, in view of the benefits obtained to facilitate the use of grid computing by the user. These benefits include job submission, checkpointing, security, job migration, etc. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Polyanionic collagen obtained from bovine pericardial tissue submitted to alkaline hydrolysis is an acellular matrix with strong potential in tissue engineering. However, increasing the carboxyl content reduces fibril formation and thermal stability compared to the native tissues. In the present work, we propose a chemical protocol based on the association of alkaline hydrolysis with 1,4-dioxane treatment to either attenuate or revert the drastic structural modifications promoted by alkaline treatments. For the characterization of the polyanionic membranes treated with 1,4-dioxane, we found that (1) scanning electron microscopy (SEM) shows a stronger reorientation and aggregation of collagen microfibrils; (2) histological evaluation reveals recovering of the alignment of collagen fibers and reassociation with elastic fibers; (3) differential scanning calorimetry (DSC) shows an increase in thermal stability; and (4) in biocompatibility assays there is a normal attachment, morphology and proliferation associated with high survival of the mouse fibroblast cell line NIH3T3 in reconstituted membranes, which behave as native membranes. Our conclusions reinforce the ability of 1,4-dioxane to enhance the properties of negatively charged polyanionic collagen associated with its potential use as biomaterials for grafting, cationic drug- or cell-delivery systems and for the coating of cardiovascular devices.
Resumo:
The European Solar Engineering School ESES is a one-year masters program that started in 1999 at the Solar Energy Research Center SERC, Dalarna University College. It has been growing in popularity over the years, with over 20 students in the current year. Approximately half the students come from Europe, the rest coming from all over the globe. This paper described the contents and experiences from seven years of running the programme and the plans for adapting the programme to the Bologna process. The majority of the students from ESES have found work in the solar industry, energy industry or taken up PhD positions. An alumni group has been started that actively gives support to past, present and potential future students.
Resumo:
Högskolepedagogik, högskolepedagogisk utbildning, BHU
Resumo:
Background: Constructive alignment (CA) is a pedagogical approach that emphasizes the alignment between the intended learning outcomes (ILOs), teaching and learning activities (TLAs) and assessment tasks (ATs) as well as creation of a teaching/learning environment where students will be able to actively create their knowledge. Objectives: This paper aims at investigating the extent of constructively-aligned courses in Computer Engineering and Informatics department at Dalarna University, Sweden. This study is based on empirical observations of teacher’s perceptions of implementation of CA in their courses. Methods: Ten teachers (5 from each department) were asked to fill a paper-based questionnaire, which included a number of questions related to issues of implementing CA in courses. Results: Responses to the items of the questionnaire were mixed. Teachers clearly state the ILOs in their courses and try to align the TLAs and ATs to the ILOs. Computer Engineering teachers do not explicitly communicate the ILOs to the students as compared to Informatics teachers. In addition, Computer Engineering teachers stated that their students are less active in learning activities as compared to Informatics teachers. When asked about their subjective ratings of teaching methods all teachers stated that their current teaching is teacher-centered but they try to shift the focus of activity from them to the students. Conclusions: From teachers’ perspectives, the courses are partially constructively-aligned. Their courses are “aligned”, i.e. ILOs, TLAs and ATs are aligned to each other but they are not “constructive” since, according to them, there was a low student engagement in learning activities, especially in Computer Engineering department.
Resumo:
Objective: For the evaluation of the energetic performance of combined renewable heating systems that supply space heat and domestic hot water for single family houses, dynamic behaviour, component interactions, and control of the system play a crucial role and should be included in test methods. Methods: New dynamic whole system test methods were developed based on “hardware in the loop” concepts. Three similar approaches are described and their differences are discussed. The methods were applied for testing solar thermal systems in combination with fossil fuel boilers (heating oil and natural gas), biomass boilers, and/or heat pumps. Results: All three methods were able to show the performance of combined heating systems under transient operating conditions. The methods often detected unexpected behaviour of the tested system that cannot be detected based on steady state performance tests that are usually applied to single components. Conclusion: Further work will be needed to harmonize the different test methods in order to reach comparable results between the different laboratories. Practice implications: A harmonized approach for whole system tests may lead to new test standards and improve the accuracy of performance prediction as well as reduce the need for field tests.