920 resultados para Engineering|Civil engineering|Materials science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, an ultrasonic wave propagation in graphene sheet is studied using nonlocal elasticity theory incorporating small scale effects. The graphene sheet is modeled as an isotropic plate of one-atom thick. For this model, the nonlocal governing differential equations of motion are derived from the minimization of the total potential energy of the entire system. An ultrasonic type of wave propagation model is also derived for the graphene sheet. The nonlocal scale parameter introduces certain band gap region in in-plane and flexural wave modes where no wave propagation occurs. This is manifested in the wavenumber plots as the region where the wavenumber tends to infinite or wave speed tends to zero. The frequency at which this phenomenon occurs is called the escape frequency. The explicit expressions for cutoff frequencies and escape frequencies are derived. The escape frequencies are mainly introduced because of the nonlocal elasticity. Obviously these frequencies are function of nonlocal scaling parameter. It has also been obtained that these frequencies are independent of y-directional wavenumber. It means that for any type of nanostructure, the escape frequencies are purely a function of nonlocal scaling parameter only. It is also independent of the geometry of the structure. It has been found that the cutoff frequencies are function of nonlocal scaling parameter (e(0)a) and the y-directional wavenumber (k(y)). For a given nanostructure, nonlocal small scale coefficient can be obtained by matching the results from molecular dynamics (MD) simulations and the nonlocal elasticity calculations. At that value of the nonlocal scale coefficient, the waves will propagate in the nanostructure at that cut-off frequency. In the present paper, different values of e(o)a are used. One can get the exact e(0)a for a given graphene sheet by matching the MD simulation results of graphene with the results presented in this paper. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thixocasting requires manufacturing of billets with non-dendritic microstructure. Aluminum alloy A356 billets were produced by rheocasting in a mould placed inside a linear electromagnetic stirrer. Subsequent heat treatment was used to produce a transition from rosette to globular microstructure. The current and the duration of stirring were explored as control parameters. Simultaneous induction heating of the billet during stirring was quantified using experimentally determined thermal profiles. The effect of processing parameters on the dendrite fragmentation was discussed. Corresponding computational modeling of the process was performed using phase-field modeling of alloy solidification in order to gain insight into the process of morphological changes of a solid during this process. A non-isothermal alloy solidification model was used for simulations. The morphological evolution under such imposed thermal cycles was simulated and compared with experimentally determined one. Suitable scaling using the thermosolutal diffusion distances was used to overcome computational difficulties in quantitative comparison at system scale. The results were interpreted in the light of existing theories of microstructure refinement and globularisation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polycrystalline diamond coatings are grown on Si (100) substrate by hot filament CVD technique. We investigate here the effect of substrate roughening on the substrate temperature and methane concentration required to maintain high quality, high growth rate and faceted morphology of the diamond coatings. It has been shown that as we increase the substrate roughness from 0.05 mu m to 0.91 mu m (centre line average or CLA) there is enhancement in deposited film quality (Raman peak intensity ratio of sp (3) to non-sp (3) content increases from 1.65 to 7.13) and the substrate temperature can be brought down to 640A degrees C without any additional substrate heating. The coatings grown at adverse conditions for sp (3) deposition has cauliflower morphology with nanocrystalline grains and coatings grown under favourable sp (3) condition gives clear faceted grains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Excimer laser irradiation at ambient temperature has been employed to produce nanostructured silicon surfaces. Nanoindentation was used to investigate the nanomechanical properties of the deformed surfaces as a function of laser parameters, such as the angle of incidence and number of laser pulses at a fixed laser fluence of 5 J cm(-2). A single-crystal silicon 311] surface was severely damaged by laser irradiation and became nanocrystalline with an enhanced porosity. The resulting laser-treated surface consisted of nanometer-sized particles. The pore size was controlled by adjusting the angle of incidence and the number of laser pulses, and varied from nanometers to microns. The extent of nanocrystallinity was large for the surfaces irradiated at a small angle of incidence and by a high number of pulses, as confirmed by x-ray diffraction and Raman spectroscopy. The angle of incidence had a stronger effect on the structure and nanomechanical properties than the number of laser pulses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method has been suggested to accurately determine the DBTT of diffusion aluminide bond coats. Micro-tensile testing of free-standing coating samples has been carried out. The DBTT was determined based on the variation of plastic strain-to-fracture with temperature. The positive features of this method over the previously reported techniques are highlighted. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of the contacts, where Au/Ti layers are used in the metallization scheme, largely depends on the product phases grown by interdiffusion at the interface. It is found that four intermetallic compounds grow with narrow homogeneity range and wavy interfaces in the interdiffusion zone. The presence of wavy interfaces is the indication of high anisotropy in diffusion of the product phases. This also reflects in the deviation of parabolic growth from the average. Further, we have determined the relevant diffusion parameters, such as interdiffusion coefficient in the penetrated region of the end members and integrated diffusion coefficients of the intermetallic compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of stacking fault energy (SFE) on the mechanism of dynamic recrystallization (DRX) during hot deformation of FCC metals is examined in the light of results from the power dissipation maps. The DRX domain for high SFE metals like Al and Ni occurred at homologous temperature below 0·7 and strain rates of 0·001 s−1 while for low SFE metals like Cu and Pb the corresponding values are higher than 0·8 and 100 s−1. The peak efficiencies of power dissipation are 50% and below 40% respectively. A simple model which considers the rate of interface formation (nucleation) involving dislocation generation and simultaneous recovery and the rate of interface migration (growth) occurring with the reduction in interface energy as the driving force, has been proposed to account for the effect of SFE on DRX. The calculations reveal that in high SFE metals, interface migration controls DRX while the interface formation is the controlling factor in low SFE metals. In the latter case, the occurrence of flow softening and oscillations could be accounted for by this model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A hypomonotectic alloy of Al-4.5wt%Cd has been manufactured by melt spinning and the resulting microstructure examined by transmission electron microscopy. As-melt spun hypomonotectic Al-4.5wt%Cd consists of a homogeneous distribution of faceted 5 to 120 nm diameter cadmium particles embedded in a matrix of aluminium, formed during the monotectic solidification reaction. The cadmium particles exhibit an orientation relationship with the aluminium matrix of {111}Al//{0001}Cd and lang110rangAlAl//lang11¯20> Cd, with four cadmium particle variants depending upon which of the four {111}Al planes is parallel to {0001}Cd. The cadmium particles exibit a distorted cuboctahedral shape, bounded by six curved {100}Al//{20¯23}Cd facets, six curved {111}Al/{40¯43}Cd facets and two flat {111}Al//{0001}Cd facets. The as-melt spun cadmium particle shape is metastable and the cadmium particles equilibrate during heat treatment below the cadmium melting point, becoming elongated to increase the surface area and decrease the separation of the {111}Al//{0001}Cd facets. The equilibrium cadmium particle shape and, therefore, the anisotropy of solid aluminium-solid cadmium and solid aluminium -liquid cadmium surface energies have been monitored by in situ heating in the transmission electron microscope over the temperature range between room temperature and 420 °C. The anisotropy of solid aluminium-solid cadmium surface energy is constant between room temperature and the cadmium melting point, with the {100}Al//{20¯23}Cd surface energy on average 40% greater than the {111}Al//{0001}Cd surface energy, and 10% greater than the {111}Al//{40¯43Cd surface energy. When the cadmium particles melt at temperatures above 321 °C, the {100}Al//{20¯23}Cd facets disappear and the {111}Al//{40¯43}Cd and {111}A1//{0001}Cd surface energies become equal. The {111}Al facets do not disappear when the cadmium particles melt, and the anisotropy of solid aluminium-liquid cadmium surface energy decreases gradually with increasing temperature above the cadmium melting point. The kinetics of cadmium solidification have been examined by heating and cooling experiments in a differential scanning calorimeter over a range of heating and cooling rates. Cadmium particle solidification is nucleated catalytically by the surrounding aluminium matrix on the {111}Al faceted surfaces, with an undercooling of 56 K and a contact angle of 42 °. The nucleation kinetics of cadmium particle solidification are in good agreement with the hemispherical cap model of heterogeneous nucleation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser sintering was carried out using a high power continuous-wave CO2 laser to prepare pellets of zirconia (ZrO2), hafnia (HfO2) and yttria (Y2O3) mixed oxides as starting materials in the deposition of optical coatings. Hardened recrystallized pellets appeared to have been formed during laser treatment. X-ray diffraction analysis revealed a monoclinic-to-tetragonal phase transformation in the binary system while the ternary system was found to have a mixture of two crystalline phases. Cross-sectional scanning electron microscopy showed two isothermal crystalline regions in the ternary system. The optical inhomogeneity was low in the films deposited from the laser-fused pellets, but the absorption at a wavelength of 351 nm increased with increasing HfO2 content. The films deposited from laser-fused pellets were analysed by electron spectroscopy for chemical analysis and found to be stoichiometric and homogeneous.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hypo-eutectic Ti-6.5 wt % Si alloy modified by separate additions of misch metal and low surface tension elements (Na, Sr, Se and Bi) has been examined by microscopic study and thermal analysis. Addition of third element led to modification of microstructure with apparently no significant enhancement of tensile ductility, with the exception of bismuth. Bismuth enhanced the ductility of the alloy by a factor of two and elastic-plastic fracture toughness to 9 MPa m–1/2 from a value of almost zero. The improved ductility of bismuth modified alloy is attributed to the reduced interconnectivity of the eutectic suicide, absence of significant suicide precipitation in the eutectic region and increase in the volume fraction of uniformly distributed dendrites. These changes are accompanied by a decrease in the temperature of eutectic solidification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Gibbs' energies of formation of BaCuO2, Y2Cu2O5 and Y2BaCuO5 from component oxides have been measured using solid state galvanic cells incorporating CaF2 as the solid electrolyte under pure oxygen at a pressure of 1.01 x 10(5) Pa Because the superconducting compound YBa2Cu3O7-delta coexists with any two of the phases CuO, BaCuO2 and Y2BaCuO5, the data on BaCuO2 and Y2BaCuO5 obtained in this study provide the basis for the evaluation of the Gibbs' energy of formation of the 1-2-3 compound at high temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of thermal cycling on the load-controlled tension-tension fatigue behavior of a Ni-Ti-Fe shape memory alloy (SMA) at room temperature was studied. Considerable strain accumulation was observed to occur in this alloy under both quasi-static and cyclic loading conditions. Though, in all cases, steady-state is reached within the first 50-100 cycles, the accumulated steady-state strain, epsilon(p.ss), is much smaller in thermally cycled alloy. As a result, the fatigue performance of them was found to be significantly enhanced vis-a-vis the as-solutionized alloy. Furthermore, under load-controlled conditions, the fatigue life of Ni-Ti-Fe alloys was found to be exclusively dependent on epsilon(p.ss). Observations made by profilometry and differential scanning calorimetry (DSC) indicate that the 200-500% enhancement in fatigue life of thermally cycled alloy is due to the homogeneous distribution of the accumulated fatigue strain. (C) 2010 Elsevier B.V. All rights reserved.