877 resultados para Engineering, Electronics and Electrical|Artificial Intelligence
Resumo:
III-Nitride materials have recently become a promising candidate for superior applications over the current technologies. However, certain issues such as lack of native substrates, and high defect density have to be overcome for further development of III-Nitride technology. This work presents research on lattice engineering of III-Nitride materials, and the structural, optical, and electrical properties of its alloys, in order to approach the ideal material for various applications. We demonstrated the non-destructive and quantitative characterization of composition modulated nanostructure in InAlN thin films with X-ray diffraction. We found the development of the nanostructure depends on growth temperature, and the composition modulation has impacts on carrier recombination dynamics. We also showed that the controlled relaxation of a very thin AlN buffer (20 ~ 30 nm) or a graded composition InGaN buffer can significantly reduce the defect density of a subsequent epitaxial layer. Finally, we synthesized an InAlGaN thin films and a multi-quantum-well structure. Significant emission enhancement in the UVB range (280 – 320 nm) was observed compared to AlGaN thin films. The nature of the enhancement was investigated experimentally and numerically, suggesting carrier confinement in the In localization centers.
Resumo:
This work introduces joint power amplifier (PA) and I/Q modulator modelling and compensation for LongTerm Evolution (LTE) transmitters using artificial neural networks (ANNs). The proposed solution util-izes a powerful nonlinear autoregressive with exogenous inputs (NARX) ANN architecture, which yieldsnoticeable results for high peak to average power ratio (PAPR) LTE signals. Given the ANNs learning capa-bilities, this one-step solution, which includes the mitigation of both PA nonlinearity and I/Q modulatorimpairments, is both accurate and adaptable
Resumo:
One of the leading motivations behind the multilingual semantic web is to make resources accessible digitally in an online global multilingual context. Consequently, it is fundamental for knowledge bases to find a way to manage multilingualism and thus be equipped with those procedures for its conceptual modelling. In this context, the goal of this paper is to discuss how common-sense knowledge and cultural knowledge are modelled in a multilingual framework. More particularly, multilingualism and conceptual modelling are dealt with from the perspective of FunGramKB, a lexico-conceptual knowledge base for natural language understanding. This project argues for a clear division between the lexical and the conceptual dimensions of knowledge. Moreover, the conceptual layer is organized into three modules, which result from a strong commitment towards capturing semantic knowledge (Ontology), procedural knowledge (Cognicon) and episodic knowledge (Onomasticon). Cultural mismatches are discussed and formally represented at the three conceptual levels of FunGramKB.
Resumo:
Background and aims: Machine learning techniques for the text mining of cancer-related clinical documents have not been sufficiently explored. Here some techniques are presented for the pre-processing of free-text breast cancer pathology reports, with the aim of facilitating the extraction of information relevant to cancer staging.
Materials and methods: The first technique was implemented using the freely available software RapidMiner to classify the reports according to their general layout: ‘semi-structured’ and ‘unstructured’. The second technique was developed using the open source language engineering framework GATE and aimed at the prediction of chunks of the report text containing information pertaining to the cancer morphology, the tumour size, its hormone receptor status and the number of positive nodes. The classifiers were trained and tested respectively on sets of 635 and 163 manually classified or annotated reports, from the Northern Ireland Cancer Registry.
Results: The best result of 99.4% accuracy – which included only one semi-structured report predicted as unstructured – was produced by the layout classifier with the k nearest algorithm, using the binary term occurrence word vector type with stopword filter and pruning. For chunk recognition, the best results were found using the PAUM algorithm with the same parameters for all cases, except for the prediction of chunks containing cancer morphology. For semi-structured reports the performance ranged from 0.97 to 0.94 and from 0.92 to 0.83 in precision and recall, while for unstructured reports performance ranged from 0.91 to 0.64 and from 0.68 to 0.41 in precision and recall. Poor results were found when the classifier was trained on semi-structured reports but tested on unstructured.
Conclusions: These results show that it is possible and beneficial to predict the layout of reports and that the accuracy of prediction of which segments of a report may contain certain information is sensitive to the report layout and the type of information sought.
Resumo:
We consider the problem of resource selection in clustered Peer-to-Peer Information Retrieval (P2P IR) networks with cooperative peers. The clustered P2P IR framework presents a significant departure from general P2P IR architectures by employing clustering to ensure content coherence between resources at the resource selection layer, without disturbing document allocation. We propose that such a property could be leveraged in resource selection by adapting well-studied and popular inverted lists for centralized document retrieval. Accordingly, we propose the Inverted PeerCluster Index (IPI), an approach that adapts the inverted lists, in a straightforward manner, for resource selection in clustered P2P IR. IPI also encompasses a strikingly simple peer-specific scoring mechanism that exploits the said index for resource selection. Through an extensive empirical analysis on P2P IR testbeds, we establish that IPI competes well with the sophisticated state-of-the-art methods in virtually every parameter of interest for the resource selection task, in the context of clustered P2P IR.
Resumo:
This paper presents a study on the implementation of Real-Time Pricing (RTP) based Demand Side Management (DSM) of water pumping at a clean water pumping station in Northern Ireland, with the intention of minimising electricity costs and maximising the usage of electricity from wind generation. A Genetic Algorithm (GA) was used to create pumping schedules based on system constraints and electricity tariff scenarios. Implementation of this method would allow the water network operator to make significant savings on electricity costs while also helping to mitigate the variability of wind generation.
Resumo:
This paper presents a study on the implementation of Real-Time Pricing (RTP) based Demand Side Management (DSM) of water pumping at a clean water pumping station in Northern Ireland, with the intention of minimising electricity costs and maximising the usage of electricity from wind generation. A Genetic Algorithm (GA) was used to create pumping schedules based on system constraints and electricity tariff scenarios. Implementation of this method would allow the water network operator to make significant savings on electricity costs while also helping to mitigate the variability of wind generation.
Resumo:
Multiphase flows, type oil–water-gas are very common among different industrial activities, such as chemical industries and petroleum extraction, and its measurements show some difficulties to be taken. Precisely determining the volume fraction of each one of the elements that composes a multiphase flow is very important in chemical plants and petroleum industries. This work presents a methodology able to determine volume fraction on Annular and Stratified multiphase flow system with the use of neutrons and artificial intelligence, using the principles of transmission/scattering of fast neutrons from a 241Am-Be source and measurements of point flow that are influenced by variations of volume fractions. The proposed geometries used on the mathematical model was used to obtain a data set where the thicknesses referred of each material had been changed in order to obtain volume fraction of each phase providing 119 compositions that were used in the simulation with MCNP-X –computer code based on Monte Carlo Method that simulates the radiation transport. An artificial neural network (ANN) was trained with data obtained using the MCNP-X, and used to correlate such measurements with the respective real fractions. The ANN was able to correlate the data obtained on the simulation with MCNP-X with the volume fractions of the multiphase flows (oil-water-gas), both in the pattern of annular flow as stratified, resulting in a average relative error (%) for each production set of: annular (air= 3.85; water = 4.31; oil=1.08); stratified (air=3.10, water 2.01, oil = 1.45). The method demonstrated good efficiency in the determination of each material that composes the phases, thus demonstrating the feasibility of the technique.
Resumo:
The Computing Division of the Business School at University College Worcester provides computing and information technology education to a range of undergraduate students. Topics include various approaches to programming, artificial intelligence, operating systems and digital technologies. Each of these has its own potentially conflicting requirements for a pedagogically sound programming environment. This paper describes an endeavor to develop a common programming paradigm across all topics. This involves the combined use of autonomous robots and Java simulations.
Resumo:
This paper presents a discrete formalism for temporal reasoning about actions and change, which enjoys an explicit representation of time and action/event occurrences. The formalism allows the expression of truth values for given fluents over various times including nondecomposable points/moments and decomposable intervals. Two major problems which beset most existing interval-based theories of action and change, i.e., the so-called dividing instant problem and the intermingling problem, are absent from this new formalism. The dividing instant problem is overcome by excluding the concepts of ending points of intervals, and the intermingling problem is bypassed by means of characterising the fundamental time structure as a well-ordered discrete set of non-decomposable times (points and moments), from which decomposable intervals are constructed. A comprehensive characterisation about the relationship between the negation of fluents and the negation of involved sentences is formally provided. The formalism provides a flexible expression of temporal relationships between effects and their causal events, including delayed effects of events which remains a problematic question in most existing theories about action and change.
Resumo:
In the half-duplex relay channel applying the decode-and-forward protocol the relay introduces energy over random time intervals into the channel as observed at the destination. Consequently, during simulation the average signal power seen at the destination becomes known at run-time only. Therefore, in order to obtain specific performance measures at the signal-to-noise ratio (SNR) of interest, strategies are required to adjust the noise variance during simulation run-time. It is necessary that these strategies result in the same performance as measured under real-world conditions. This paper introduces three noise power allocation strategies and demonstrates their applicability using numerical and simulation results.
Resumo:
The aim of this dissertation was to investigate flexible polymer-nanoparticle composites with unique magnetic and electrical properties. Toward this goal, two distinct projects were carried out. The first project explored the magneto-dielectric properties and morphology of flexible polymer-nanoparticle composites that possess high permeability (µ), high permittivity (ε) and minimal dielectric, and magnetic loss (tan δε, tan δµ). The main materials challenges were the synthesis of magnetic nanoparticle fillers displaying high saturation magnetization (Ms), limited coercivity, and their homogeneous dispersion in a polymeric matrix. Nanostructured magnetic fillers including polycrystalline iron core-shell nanoparticles, and constructively assembled superparamagnetic iron oxide nanoparticles were synthesized, and dispersed uniformly in an elastomer matrix to minimize conductive losses. The resulting composites have demonstrated promising permittivity (22.3), permeability (3), and sustained low dielectric (0.1), magnetic (0.4) loss for frequencies below 2 GHz. This study demonstrated nanocomposites with tunable magnetic resonance frequency, which can be used to develop compact and flexible radio frequency devices with high efficiency. The second project focused on fundamental research regarding methods for the design of highly conductive polymer-nanoparticle composites that can maintain high electrical conductivity under tensile strain exceeding 100%. We investigated a simple solution spraying method to fabricate stretchable conductors based on elastomeric block copolymer fibers and silver nanoparticles. Silver nanoparticles were assembled both in and around block copolymer fibers forming interconnected dual nanoparticle networks, resulting in both in-fiber conductive pathways and additional conductive pathways on the outer surface of the fibers. Stretchable composites with conductivity values reaching 9000 S/cm maintained 56% of their initial conductivity after 500 cycles at 100% strain. The developed manufacturing method in this research could pave the way towards direct deposition of flexible electronic devices on any shaped substrate. The electrical and electromechanical properties of these dual silver nanoparticle network composites make them promising materials for the future construction of stretchable circuitry for displays, solar cells, antennas, and strain and tactility sensors.
Resumo:
Robotics is an emergent branch of engineering that involves the conception, manufacture, and control of robots. It is a multidisciplinary field that combines electronics, design, computer science, artificial intelligence, mechanics and nanotechnology. Its evolution results in machines that are able to perform tasks with some level of complexity. Multi-agent systems is a researching topic within robotics, thus they allow the solving of higher complexity problems, through the execution of simple routines. Robotic soccer allows the study and development of robotics and multiagent systems, as the agents have to work together as a team, having in consideration most problems found in our quotidian, as for example adaptation to a highly dynamic environment as it is the one of a soccer game. CAMBADA is the robotic soccer team belonging to the group of research IRIS from IEETA, composed by teachers, researchers and students of the University of Aveiro, which annually has as main objective the participation in the RoboCup, in the Middle Size League. The purpose of this work is to improve the coordination in set pieces situations. This thesis introduces a new behavior and the adaptation of the already existing ones in the offensive situation, as well as the proposal of a new positioning method in defensive situations. The developed work was incorporated within the competition software of the robots. Which allows the presentation, in this dissertation, of the experimental results obtained, through simulation software as well as through the physical robots on the laboratory.
Resumo:
This thesis presents the achievements and scientific work conducted using a previously designed and fabricated 64 x 64-pixel ion camera with the use of a 0.35 μm CMOS technology. We used an array of Ion Sensitive Field Effect Transistors (ISFETs) to monitor and measure chemical and biochemical reactions in real time. The area of our observation was a 4.2 x 4.3 mm silicon chip while the actual ISFET array covered an area of 715.8 x 715.8 μm consisting of 4096 ISFET pixels in total with a 1 μm separation space among them. The ion sensitive layer, the locus where all reactions took place was a silicon nitride layer, the final top layer of the austriamicrosystems 0.35 μm CMOS technology used. Our final measurements presented an average sensitivity of 30 mV/pH. With the addition of extra layers we were able to monitor a 65 mV voltage difference during our experiments with glucose and hexokinase, whereas a difference of 85 mV was detected for a similar glucose reaction mentioned in literature, and a 55 mV voltage difference while performing photosynthesis experiments with a biofilm made from cyanobacteria, whereas a voltage difference of 33.7 mV was detected as presented in literature for a similar cyanobacterial species using voltamemtric methods for detection. To monitor our experiments PXIe-6358 measurement cards were used and measurements were controlled by LabVIEW software. The chip was packaged and encapsulated using a PGA-100 chip carrier and a two-component commercial epoxy. Printed circuit board (PCB) has also been previously designed to provide interface between the chip and the measurement cards.
Resumo:
This thesis describes two separate projects. The first is a theoretical and experimental investigation of surface acoustic wave streaming in microfluidics. The second is the development of a novel acoustic glucose sensor. A separate abstract is given for each here. Optimization of acoustic streaming in microfluidic channels by SAWs Surface Acoustic Waves, (SAWs) actuated on flat piezoelectric substrates constitute a convenient and versatile tool for microfluidic manipulation due to the easy and versatile interfacing with microfluidic droplets and channels. The acoustic streaming effect can be exploited to drive fast streaming and pumping of fluids in microchannels and droplets (Shilton et al. 2014; Schmid et al. 2011), as well as size dependant sorting of particles in centrifugal flows and vortices (Franke et al. 2009; Rogers et al. 2010). Although the theory describing acoustic streaming by SAWs is well understood, very little attention has been paid to the optimisation of SAW streaming by the correct selection of frequency. In this thesis a finite element simulation of the fluid streaming in a microfluidic chamber due to a SAW beam was constructed and verified against micro-PIV measurements of the fluid flow in a fabricated device. It was found that there is an optimum frequency that generates the fastest streaming dependent on the height and width of the chamber. It is hoped this will serve as a design tool for those who want to optimally match SAW frequency with a particular microfluidic design. An acoustic glucose sensor Diabetes mellitus is a disease characterised by an inability to properly regulate blood glucose levels. In order to keep glucose levels under control some diabetics require regular injections of insulin. Continuous monitoring of glucose has been demonstrated to improve the management of diabetes (Zick et al. 2007; Heinemann & DeVries 2014), however there is a low patient uptake of continuous glucose monitoring systems due to the invasive nature of the current technology (Ramchandani et al. 2011). In this thesis a novel way of monitoring glucose levels is proposed which would use ultrasonic waves to ‘read’ a subcutaneous glucose sensitive-implant, which is only minimally invasive. The implant is an acoustic analogy of a Bragg stack with a ‘defect’ layer that acts as the sensing layer. A numerical study was performed on how the physical changes in the sensing layer can be deduced by monitoring the reflection amplitude spectrum of ultrasonic waves reflected from the implant. Coupled modes between the skin and the sensing layer were found to be a potential source of error and drift in the measurement. It was found that by increasing the number of layers in the stack that this could be minimized. A laboratory proof of concept system was developed using a glucose sensitive hydrogel as the sensing layer. It was possible to monitor the changing thickness and speed of sound of the hydrogel due to physiological relevant changes in glucose concentration.